Binary Search
1. Introduction
Searching is one of the fundamental algorithms in computer science. If we want to perform multiple queries to some data, the data is stored in some specific structure for efficient searching. For example, if we have just linear array of integers, we can find the specific element in linear time, step by step compairing it with each one in array. But what if the array is already sorted? In this case we can use binary search that allows to find the required element in logarithmic time.
Binary search problems are widely spread in programming competitions: from regional to international challenges like IOI (International Olympiad in Informatics) or ACM ICPC (International Collegiate Programming Contest). Binary search is used not only in problems with sorted array, but also in graphs, in computational geometry, number theory and combinatorics.
There are many practice and contest platforms in the world where one can solve competitive programming problems: Topcoder, USACO, Codeforces, Codechef. But in this article we’ll discuss the problems form E-olymp Internet portal (www.e-olymp.com), that was developed by Ivan Franko Zhytomyr State University, the Department of Applied Mathematics and Computer Science with the financial support of the Ministry of Education and Science of Ukraine in 2007 (Medvediev, 2019).
2. Binary search and linear arrays
The simplest application of binary search is to find a number in a sorted array. At each step we take the median value and compare it with the target value. Based on the comparison, we can eliminate half of the array and continue the search in another half.

For example, if we look for x in m[start; end], we must divide the search segment by half with the value mid = (start + end) / 2. If x > m[mid], then x belongs to segment m[mid + 1; end]. Otherwise we need to continue search on segment m[start; mid].

[image: image1.emf]m[start; end]

m[start; mid] m[mid + 1; end]

x > m[mid] x ≤m[mid]

Problem #9016. Binary Search (www.e-olymp.com/en/problems/9016). Sorted array of n integers is given. You must answer q queries: whether the given number x is in the array.
Solution. Consider the implementation in C language of the idea given above. Function my_bin_search returns 1 if x belongs to segment m[start; end] and 0 otherwise.
int my_bin_search(int *m, int start, int end, int x)

{

 while (start < end)

 {

 int mid = (start + end) / 2;

 if (x > m[mid])

 start = mid + 1;

 else
 end = mid;

 }

 return m[start] == x;

}

Let’s remind lower_bound and upper_bound functions from STL (Standard Template Library).
· lower_bound (first, last, x) returns an iterator pointing to the first element in the range [first, last) that is not less than x, or last if no such element is found.
· upper_bound (first, last, x) returns an iterator pointing to the first element in the range [first, last) that is greater than x, or last if no such element is found.
So we can conclude that if lower_bound(m, m + n, x) ≠ upper_bound(m, m + n, x), number x is present in array. Otherwise there is no x in array.

[image: image2.emf]2 2 4 6 6 7 7 7 7 9 9 10

lower_bound(m,m+n,7) –m = 5

0 1 2 3 4 5 6 7 8 10 11 9

upper_bound(m,m+n,7) –m = 9

In the problem #9016 we can also use function binary_search(m, m + n, x) that returns true, if number x belongs to array and false otherwise.
Using binary search q queries are executed in O(qlog2n) time.

Problem #9017. Binary Search - 1 (www.e-olymp.com/en/problems/9017). Sorted array of n integers is given. You must answer q queries: how many times the given number x appears in the array.
Solution. The number of times x appears in a sorted array, equals to
upper_bound(m, m + n, x) – lower_bound(m, m + n, x)
Below we give the implementation of my_lower_bound and my_upper_bound functions. For convenience functions below return indexes, not iterators.
	int my_lower_bound(int *m, int start, int end,

 int x)

{

 while (start < end)

 {

 int mid = (start + end) / 2;

 if (x <= m[mid])

 end = mid;

 else
 start = mid + 1;

 }

 return start;

}
	int my_upper_bound(int *m, int start, int end,

 int x)

{

 while (start < end)

 {

 int mid = (start + end) / 2;

 if (x >= m[mid])

 start = mid + 1;

 else
 end = mid;

 }

 return start;

}

References

Medvediev M. (2019). The use of E-olymp Internet portal in Programming Competitions. Olympiads in Informatics, 2019, Vol. 13.
E-Olymp internet portal: https://www.e-olymp.com
Codeforces internet portal: http://codeforces.com/
Codechef internet portal: https://www.codechef.com/
Cormen, Т.H., Leiserson, C.E., Rivest R.L., Stein C. (2009). Introduction to Algorithms.
IOI – International Olympiad in Informatics: https://ioinformatics.org/
ACM ICPC – The International Collegiate Programming Contest: https://icpc.baylor.edu/
Topcoder internet portal: https://www.topcoder.com/
USA Computing Olympiad: http://www.usaco.org/
_1638872935.vsd
m[start; end]

m[start; mid]

m[mid + 1; end]

x > m[mid]

x ≤ m[mid]

_1638875899.vsd
2

2

4

6

6

7

7

7

7

9

9

10

lower_bound(m,m+n,7) – m = 5

0

1

2

3

4

5

6

7

8

10

11

9

upper_bound(m,m+n,7) – m = 9

