EXCEPTIONS
Exceptions provide a way to react to exceptional circumstances (like runtime errors) in programs by transferring control to special functions called handlers.

To catch exceptions, a portion of code is placed under exception inspection. This is done by enclosing that portion of code in a try-block. When an exceptional circumstance arises within that block, an exception is thrown that transfers the control to the exception handler. If no exception is thrown, the code continues normally and all handlers are ignored.

An exception is thrown by using the throw keyword from inside the try block. Exception handlers are declared with the keyword catch, which must be placed immediately after the try block.
Example 1
Read the value of n. If 2 ≤ n ≤ 10, print its square.

If n < 1, print “n is less than 10”.

If n > 10, print “n is greater than 10”.

#include <stdio.h>

int n, res;

int main(void)

{

 scanf("%d",&n);

 try

 {

 if (n < 2) throw "n is less than 2";

 if (n > 10) throw "n is greater than 10";

 printf("%d\n",n*n);

 }

 catch (const char* msg)

 {

 puts(msg);

 }

 return 0;

}

The exception handler is declared with the catch keyword immediately after the closing brace of the try block. The syntax for catch is similar to a regular function with one parameter. The type of this parameter is very important, since the type of the argument passed by the throw expression is checked against it, and only in the case they match, the exception is caught by that handler.

Multiple handlers (i.e. catch expressions) can be chained; each one with a different parameter type. Only the handler whose argument type matches the type of the exception specified in the throw statement is executed.
Example 2
Read the value of n. If 2 ≤ n ≤ 10, print its square.

If n < 1, print 1.

If n > 10, print “n is greater than 10”.

#include <stdio.h>

int n, res;

int main(void)

{

 scanf("%d",&n);

 try

 {

 if (n < 2) throw 1;

 if (n > 10) throw "n is greater than 10";

 printf("%d\n",n*n);

 }

 catch (const char* msg)

 {

 puts(msg);

 }

 catch (int e)

 {

 printf("%d\n",e);

 }

 return 0;

}

If an ellipsis (...) is used as the parameter of catch, that handler will catch any exception no matter what the type of the exception thrown. This can be used as a default handler that catches all exceptions not caught by other handlers:
Example 3
Read the value of n. If 2 ≤ n ≤ 10, print its square. Otherwise print out of bounds.
#include <stdio.h>

int n, res;

int main(void)

{

 scanf("%d",&n);

 try

 {

 if (n < 2) throw 1;

 if (n > 10) throw "n is greater than 10";

 printf("%d\n",n*n);

 }

 catch (...)

 {

 puts("n is out of bounds [2..10]");

 }

 return 0;

}

http://www.e-olymp.com/ru/problems/1118
