
C Programming Language
INTRODUCTION

Introduction

https://en.wikipedia.org/wiki/C_(programming_language)

C (/ˈsiː/) is a general-purpose, imperative computer programming language. C was

originally developed by Dennis Ritchie between 1969 and 1973 at Bell Labs and used to

re-implement the Unix operating system

The C Language is developed for creating system applications that interacts

directly to the hardware devices such as drivers, kernels etc. C programming is

considered as the base for other programming languages, that is why it is known as

mother language.

Structure of the program

A computer program is a sequence of instructions that tell the computer what to

do.

Statements and expressions

The most common type of instruction in a program is the statement. A statement in

C is the smallest independent unit in the language. In human language, it is analogous to

a sentence. We write sentences in order to convey an idea. In C, we write statements in

order to convey to the compiler that we want to perform a task.

Statements in C are terminated by a semicolon.

There are many different kinds of statements in C. The following are some of the

most common types of simple statements:

int y;
This is a declaration statement. It tells the compiler that y is a variable. You may

remember variables from algebra in school. Variables serve the same purpose here: to

provide a name for a value that can vary. All variables in a program must be declared

before they are used. We will talk more about variables shortly.

y = 24;

This is an assignment statement. It assigns a value (24) to a variable (y).

printf("%d",y);

This is an output statement. It outputs the value of y (which we set to 24 in the

previous statement) to the screen. Format “%d” means that we print integer value in

decimal notation.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Help:IPA/English

The compiler is also capable of resolving expressions. An expression is a

mathematical entity that evaluates to a value. For example, in math, the expression 4 + 6

evaluates to the value 10. Expressions can involve values (such as 4), variables (such as

y), operators (such as +) and functions (which return an output value based on some

input value). They can be singular (such as 4, or y), or compound (such as 4 + 6, 4 + x, x

+ y, or (2 + x) * (y – 3)).

For example, the statement y = 4 + 6; is a valid assignment statement. The

expression 4 + 6 evaluates to the value of 10. This value of 10 is then assigned to y.

What is the difference between a statement and an expression?

 A statement is a “complete sentence” that tells the compiler to perform a

particular task. Statement: y = 4 + 6;

 An expression is a mathematical entity that evaluates to a value. Expressions

are often used inside of statements. Expression: 4 + 6.

Functions

In C statements are typically grouped into units called functions. A function is a

collection of statements that executes sequentially. Every C program must contain a

special function called main. When the C program is run, execution starts with the first

statement inside of function main. Functions are typically written to do a very specific

job. For example, a function named “max” might contain statements that figures out

which of two numbers is larger. A function named “calculateGrade” might calculate a

student’s grade.

Libraries and the C Standard Library

A library is a collection of precompiled code (e.g. functions) that has been

“packaged up” for reuse in many different programs. Libraries provide a common way

to extend what your programs can do. For example, if you were writing a game, you’d

probably want to include a sound library and a graphics library.

The C core language is actually very small and minimalistic. However, C also

comes with a library called the C standard library that provides additional functionality

for your use. One of the most commonly used parts of the C standard library is the

stdio.h (STanDart Input Output) library, which contains functionality for writing to the

screen and getting input from a console user.

What is the difference between a function and a library?

 A function is a collection of statements that executes sequentially, typically

designed to perform a specific job.

 A library is a collection of functions packaged for use in multiple programs.

Taking a look at a sample program

Now that you have a brief understanding of what statements, functions, and

libraries are, let’s look at a simple “Hello World!” program:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

 return 0;

}

Line 1 is a special type of statement called a preprocessor directive. Preprocessor

directives tell the compiler to perform a special task. In this case, we are telling the

compiler that we would like to add the contents of the stdio.h header to our program.

The stdio.h header allows us to access functionality in the stdio.h library, which will

allow us to write to the screen.

Line 2 has nothing on it, and is ignored by the compiler.

Line 3 declares the main() function, which as you learned above, is mandatory.

Every program must have a main() function.

Lines 4 and 7 tell the compiler which lines are part of the main function.

Everything between the opening curly brace on line 4 and the closing curly brace on

line 7 is considered part of the main() function.

Line 5 is our first statement (you can tell it’s a statement because it ends with a

semicolon), and it is an output statement. Function printf prints the string “Hello

World!” on the screen. The character ‘\n’ means a new line character.

Line 6 is a new type of statement, called a return statement. When an executable

program finishes running, the main() function sends a value back to the operating

system that indicates whether it was run successfully or not.

This particular return statement returns the value of 0 to the operating system,

which means “everything went okay!”. Non-zero numbers are typically used to indicate

that something went wrong, and the program had to abort.

All of the programs we write will follow this template, or a variation on it.

What symbol do statements in C end with?

 The semicolon (;)

Try the next example:

#include <stdio.h>

int main(void)

{

 printf("Hello\n Wor\nld!\n");

 return 0;

}

Syntax and syntax errors

In English, sentences are constructed according to specific grammatical rules that

you probably learned in English class in school. For example, normal sentences end in a

period. The rules that govern how sentences are constructed in a language is called

syntax. If you forget the period and run two sentences together, this is a violation of the

English language syntax.

C has a syntax too: rules about how your programs must be constructed in order to

be considered valid. When you compile your program, the compiler is responsible for

making sure your program follows the basic syntax of the C language. If you violate a

rule, the compiler will complain when you try to compile your program, and issue you a

syntax error.

For example, you learned above that statements must end in a semicolon.

Let’s see what happens if we omit the semicolon in the following program:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n")

 return 0;

}

Visual studio produces the following error:
d:\microsoft visual studio 8\work\ex\ex\ex.cpp(6) : error C2143: syntax

error : missing ';' before 'return'

This is telling you that you have an syntax error on line 6: You’ve forgotten a

semicolon before the return. In this case, the error is actually at the end of line 5. Often,

the compiler will pinpoint the exact line where the syntax error occurs for you.

However, sometimes it doesn’t notice until the next line.

Syntax errors are common when writing a program. Fortunately, they’re often

easily fixable. The program can only be fully compiled (and executed) once all syntax

errors are resolved.

What is a syntax error?

A syntax error is a compiler error that occurs at compile-time when your program

violates the grammar rules of the C language.

E-OLYMP 1024. Hello World! Print the message "Hello World!".

► Use the program given above.

E-OLYMP 990. Hello World! Print the digits 1, 2, 3, 4, 5, each in a separate line.

► Use ‘\n’ to separate the digits.

E-OLYMP 5133. abc In the first line print one letter а. In the second line print

two letters b. In the third line print three letters c.

► Use ‘\n’ to separate the lines.

Comments

A comment is a line (or multiple lines) of text that are inserted into the source code

to explain what the code is doing. In C there are two kinds of comments.

The // symbol begins a C single-line comment, which tells the compiler to ignore

everything to the end of the line. For example:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n"); // this is a comment

 return 0; // return statement

}

The /* and */ pair of symbols denotes a C-style multi-line comment. Everything in

between the symbols is ignored.

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

 /* This is a multi-line comment.

 This line will be ignored.

 So will this one. */

 return 0;

}

https://www.e-olymp.com/en/problems/1024
https://www.e-olymp.com/en/problems/990
https://www.e-olymp.com/en/problems/5133

A first look at variables, initialization and assignment

Variables

A statement such as x = 5; seems obvious enough. As you would guess, we are

assigning the value of 5 to x. But what exactly is x? x is a variable.

A variable in C is a name for a piece of memory that can be used to store

information. You can think of a variable as a mailbox, or a cubbyhole, where we can put

and retrieve information. All computers have memory, called RAM (random access

memory), that is available for programs to use. When a variable is defined, a piece of

that memory is set aside for the variable.

A computer’s memory is a contiguous sequence of slots, or memory cells. Similar

to how a street address can be used to find a given house on a street, the memory

address allows us to find and access the contents of memory at a particular location. All

types of data – whole numbers, floating point numbers, strings of characters, boolean

values – can be stored in memory cells.

A variable is a named memory cell. We call it a variable because the value in the

cell can change. Memory cells can be of different sizes: 8 bits, 16 bits, 32 bits, 64 bits.

Different sized cells are used to store different types of data.

Basic types

The C programming language provides the programmer with a set of data types for

storing information and building up data types that are not part of the language itself.

The former data types are called built-in types, and the latter are called user-defined

types.

The three basic built-in types are: Characters, Integer numbers and Floating-point

numbers.

The integer data types come in two flavors – signed and unsigned – which permit

the programmer to specify values greater than and less than zero. In other words,

positive and negative numbers. All of these basic built-in types have a specific size

(amount of memory required) and range of values that they can represent. The bigger

the numbers, the more memory is required.

The smallest unit of memory is a binary digit (bit), which can hold a value of 0 or

1. You can think of a bit as being like a traditional light switch – either the light is off

(0), or it is on (1). Perhaps surprisingly, in modern computers, each bit does not get its

own address. The smallest addressable unit of memory is a group of 8 bits known as a

byte.

Type Description
int integer, 4 bytes

long long integer, 8 bytes
float real, 4 bytes
double real, 8 bytes
char character, 1 byte

Variable declaration

All the variables that a program is going to use must be declared prior to use.

Declaration of a variable serves two purposes:

 It associates a type and an identifier (or name) with the variable. The type

allows the compiler to interpret statements correctly. For example in the

CPU the instruction to add two integer values together is different from the

instruction to add two floating-point values together. Hence the compiler

must know the type of the variables so it can generate the correct add

instruction.

 It allows the compiler to decide how much storage space to allocate for

storage of the value associated with the identifier and to assign an address

for each variable which can be used in code generation.

A variable declaration has the form:
type identifier-list;

type specifies the type of the variables being declared. The identifier-list is a list of

the identifiers of the variables being declared, separated by commas.

int i, j, k;

double x, y;

memory

i j k

x y

Input and output with scanf / printf

The standard input stream (stdin) is the default source of data for applications. In

most systems, it is usually directed by default to the keyboard.

The standard output stream (stdout) is the default destination of output for

applications. In most systems, it is usually directed by default to the text console

(generally, on the screen).

printf() is an I/O function that prints the formatted data to the stdout. This

function returns the total number of characters, but on failure a negative value is

returned.

int printf (const char * format, ...);

If format includes format specifiers (subsequences beginning with %), the

additional arguments following format are formatted and inserted in the resulting string

replacing their respective specifiers.

Type description Type Format
integer, 4 bytes int %d

integer, 8 bytes long long %lld

real, 4 bytes float %f

real, 8 bytes double %lf

character, 1 byte char %c

array of chars char[], string %s

scanf() is an I/O function which is used to read the stdin to store the data in the

variables pointed by the argument list. The function returns the number of items read on

success, it can be zero if a matching failure occurs.

int scanf(const char *format,..);

Read and print one number:

#include <stdio.h>

int x;

int main(void)

{

 scanf("%d",&x);

 printf("%d\n",x);

 return 0;

}

Find the sum of two integers:

#include <stdio.h>

int a, b, res;

int main(void)

{

 scanf("%d %d",&a,&b);

 res = a + b;

 printf("%d + %d = %d\n", a, b, res);

 return 0;

}

E-OLYMP 7943. Perimeter of rectangle Find the perimeter of rectangle with

integer sides a and b.

► Write a program according to the next steps:

1. Read the values of a and b;

2. Find the perimeter according to formula: p = 2 * (a + b);

https://www.e-olymp.com/en/problems/7943

3. Print the value of perimeter p.

p = 2 * (a + b)
a
b

pinput output

E-OLYMP 7944. Area of rectangle Find the area of rectangle with integer sides

a and b.

► Use formula area = a * b for area of rectangle.

Operation

integer

division
remainder,

mod

C notation

/

%

Sample

26 / 10 = 2

26 % 10 = 6

E-OLYMP 5175. The last digit Find the last digit of a positive integer n.

► Use formula d = n % 10 to find the last digit d of number n.

Data type

int

long long

range

[-2
31

; 2
31

 – 1]

[-2
63

; 2
63

 – 1]

format

%d

%lld

Note that

 231 – 1 = 2 147 483 647 ≈ 2 * 109;

 263 – 1 = 9 223 372 036 854 775 807 ≈ 9 * 1018;

E-OLYMP 519. Sum of squares Find the sum of squares of two integers a and b.

The numbers do not exceed 109 by absolute value.

► We must find the value res = a * a + b * b. We know that a, b ≤ 109, so a * a +

b * b ≤ 1018. We must use long long data type in this problem.

sizeof operator

The sizeof is a keyword, but it is a compile-time operator that determines the size,

in bytes, of a variable or data type. The sizeof operator can be used to get the size of

classes, structures, unions and any other user defined data type.

The syntax of using sizeof is as follows:
sizeof(data type)

or
sizeof(variable)

The next program prints the sizes of built-in data types:

https://www.e-olymp.com/en/problems/7943
https://www.e-olymp.com/en/problems/5175
https://www.e-olymp.com/en/problems/519

#include <stdio.h>

int main(void)

{

 printf("%d\n",sizeof(int)); // 4

 printf("%d\n",sizeof(long long)); // 8

 printf("%d\n",sizeof(float)); // 4

 printf("%d\n",sizeof(double)); // 8

 printf("%d\n",sizeof(char)); // 1

 return 0;

}

The next program prints the sizes of variables:

#include <stdio.h>

int i, j, k;

double x, y;

char c, d;

int main(void)

{

 printf("%d %d %d\n",sizeof(i),sizeof(j),sizeof(k));

 printf("%d %d\n",sizeof(x),sizeof(y));

 printf("%d %d\n",sizeof(c),sizeof(d));

 return 0;

}

l-values and r-values

In C, variables are a type of l-value (pronounced ell-value). An l-value is a value

that has an address (in memory). Since all variables have addresses, all variables are l-

values. The name l-value came about because l-values are the only values that can be on

the left side of an assignment statement. When we do an assignment, the left hand side

of the assignment operator must be an l-value. Consequently, a statement like 5 = 6; will

cause a compile error, because 5 is not an l-value. The value of 5 has no memory, and

thus nothing can be assigned to it. 5 means 5, and its value can not be reassigned. When

an l-value has a value assigned to it, the current value at that memory address is

overwritten.

The opposite of l-values are r-values (pronounced arr-values). An r-value refers to

any value that can be assigned to an l-value. r-values are always evaluated to produce a

single value. Examples of r-values are single numbers (such as 5, which evaluates to 5),

variables (such as x, which evaluates to whatever value was last assigned to it), or

expressions (such as 2 + x, which evaluates to the value of x plus 2).

Here is an example of some assignment statements, showing how the r-values

evaluate:

#include <stdio.h>

int main(void)

{

 int y; // define y as an integer variable

 y = 4; // 4 evaluates to 4, which is then assigned to y

 y = 2 + 5; // 2 + 5 evaluates to 7, which is then assigned to y

 int x; // define x as an integer variable

 x = y; // y evaluates to 7 (from before),

 // which is then assigned to x.

 x = x; // x evaluates to 7, which is then assigned to x (useless!)

 x = x + 1; // x + 1 evaluates to 8, which is then assigned to x.

 printf("%d %d\n", x, y);

 return 0;

}

Initialization vs assignment

C supports two related concepts that new programmers often get mixed up:

assignment and initialization.

After a variable is defined, a value may be assigned to it via the assignment

operator (the ‘=’ sign):

int x; // this is a variable definition

x = 5; // assign the value 5 to variable x

C will let you both define a variable AND give it an initial value in the same step.

This is called initialization.

int x = 5; // initialize variable x with the value 5

A variable can only be initialized when it is defined.

Uninitialized variables

Unlike some programming languages, C does not initialize variables to a given

value (such as zero) automatically (for performance reasons). Thus when a variable is

assigned to a memory location by the compiler, the default value of that variable is

whatever garbage happens to already be in that memory location! A variable that has

not been assigned a value is called an uninitialized variable.

Note: Some compilers, such as Visual Studio, will initialize the contents of

memory when you’re using a debug build configuration. This will not happen when

using a release build configuration.

Uninitialized variables can lead to interesting (and by interesting, we mean

unexpected) results. Consider the following short program:

#include <stdio.h>

int x;

int main(void)

{

 int y;

 printf("%d %d\n",x,y);

 return 0;

}

Using uninitialized variables is one of the most common mistakes that novice

programmers make, and unfortunately, it can also be one of the most challenging to

debug (because the program may run fine anyway if the uninitialized value happened to

get assigned to a spot of memory that had a reasonable value in it, like 0).

Keywords and naming identifiers

Keywords

C reserves a set of words for its own use. These words are called keywords, and

each of these keywords has a special meaning within the C language.

For example, the keywords are: goto, static, sizeof, do, double, void virtual,

unsigned.

Along with a set of operators, these keywords define the entire language of C

(preprocessor commands excluded). Because these keywords have special meaning,

your IDEs will change the text color of these words (usually to blue) to make them

more visible.

Identifiers

The name of a variable, function, class, or other object in C is called an identifier.

C gives you a lot of flexibility to name identifiers as you wish. However, there are a few

rules that must be followed when naming identifiers:

 The identifier can not be a keyword. Keywords are reserved.

 The identifier can only be composed of letters (lower or upper case),

numbers, and the underscore character. That means the name can not contain

symbols (except the underscore) nor whitespace.

 The identifier must begin with a letter (lower or upper case) or an

underscore. It can not start with a number.

 C distinguishes between lower and upper case letters. nvalue is different

than nValue is different than NVALUE.

In the next program we have two different variables _x1 (lower-case letter ’x’) and

_X1 (upper-case letter ’x’).

#include <stdio.h>

int _x1, _X1;

int main(void)

{

 _x1 = 3;

 _X1 = _x1 + 2;

 printf("%d %d\n", _x1, _X1);

 return 0;

}

A first look at operators

An expression is a combination of literals, variables, functions, and operators that

evaluates to a value.

Literals

A literal is a fixed value that has been inserted (hardcoded) directly into the source

code, such as 5, 3.14159 or ‘a’. Literals always evaluate to themselves, and have no

representation in memory. Here’s an example that uses literals:

#include <stdio.h>

int main(void)

{

 int x = 2; // x is a variable, 2 is a literal

 printf("%d\n", 3 + 4); // 3 + 4 is an expression,

 // 3 and 4 are literals

 printf("Hello World!\n"); // "Hello, world\n" is a literal too

 return 0;

}

Literals, variables, and functions are all known as operands. Operands supply the

data that the expression works with. We just introduced literals, which evaluate to

themselves. Variables evaluate to the values they hold. Functions evaluate to produce a

value of the function’s return type (unless the return type is void).

Operators

Operators tell the expression how to combine one or more operands to produce a

new result. For example, in the expression “3 + 4”, the + is the plus operator. The +

operator tells how to combine the operands 3 and 4 to produce a new value (7).

You are likely already quite familiar with standard arithmetic operators from

common usage in math, including addition (+), subtraction (-), multiplication (*), and

division (/). Assignment (=) is an operator as well. Some operators use more than one

symbol, such as the equality operator (==), which allows us to compare two values to

see if they are equal.

Note: One of the most common mistakes the new programmers make is to confuse

the assignment operator (=) with the equality operator (==). Assignment (=) is used to

assign a value to a variable. Equality (==) is used to test whether two operands are equal

in value.

#include <stdio.h>

int main(void)

{

 int x;

 x = 10; // assignment operator

 if (x == 10) printf("x = 10\n"); // equality operator

 return 0;

}

Operators come in three types:

Unary operators act on one operand. An example of a unary operator is the -

operator. In the expression -5, the - operator is only being applied to one operand (5) to

produce a new value (-5).

Binary operators act on two operands (known as left and right). An example of a

binary operator is the + operator. In the expression 3 + 4, the + operator is working with

a left operand (3) and a right operand (4) to produce a new value (7).

Ternary operators act on three operands. There is only one of these in C, which

we’ll cover later.

Also note that some operators have more than one meaning. For example, the -

operator has two contexts. It can be used in unary form to invert a number’s sign (e.g. to

convert 5 to -5, or vice versa), or it can be used in binary form to do arithmetic

subtraction (e.g. 4 – 3).

Increment ++ and decrement -- operators

The increment operator ++ increases the value of a variable by 1. Similarly, the

decrement operator -- decreases the value of a variable by 1.

 If you use the ++ operator as prefix like: ++var. The value of var is

incremented by 1 and then it returns the value.

 If you use the ++ operator as postfix like: var++. The original value of var is

returned first and then var is incremented by 1.

#include <stdio.h>

int main(void)

{

 int a = 2, b = 6;

 printf("%d %d\n",++a, b++); // 3 6

 printf("%d %d\n", a, b); // 3 7

 printf("%d %d\n", --a, b--); // 2 7

 printf("%d %d\n", a, b); // 2 6

 return 0;

}

E-olymp Problems to solve:

www.e-olymp.com

Main contest

Print the data:

1024. Hello World!

990. 12345

5133. abc

Simple math formula (build an expression for answer):

4716. Divide the apples – 1

4717. Divide the apples – 2

7401. Stepan Friends

7943. Perimeter of rectangle

7944. Area of rectangle

1286. Tuck-shop

Working with digits:

1. Simple problem?

5175. The last digit

906. Product of digits

939. The square of sum

943. Swap the digits

945. Without the middle

949. Two digits from four digits

long long type:

519. Sum of squares

8809. Marathon

8810. School concert

8811. Product of two integers

2860. Sum of integers on the interval

Math problems:

248. Young gardener

8254. Hotel rooms

9405. Professor and baloons

9406. Professor and batteries

Additional contest

Print the data:

8800. Hello, Python!
Simple math formula:

8801. Next number

8802. Previous number

8806. Number of students

8807. Opposite number

8813. Surface area and volume

8815. Surface area and volume 2

8824. Find the number

8837. Quotent and remainder

Working with digits:

http://www.e-olymp.com/

953. Remainder

955. The square of sum

959. Sum of digits

8599. Digits of 3-digit number

8600. Sum and product 2

8601. Swap the digits in two-digit integer

8602. Third from right

8603. Sum and product 3

8607. Sum of squares of digits

8638. Append three

8855. Find the number 1

long long type:

7491. Integer

QUIZ

1. What is the output of following program?

#include <stdio.h>

int main(void)

{

 int x = printf("Hello World!");

 printf("%d", x);

 return 0;

}

2. What is the output of following program?

#include <stdio.h>

int main()

{

 printf("%d", printf("%d", 1234));

 return 0;

}

3. What is the output of following program?

#include <stdio.h>

int main()

{

 int a = 10;

 int b = 15;

 printf("=%d", (a + 1), (b = a + 2));

 printf(" %d=", b);

 return 0;

}

4. What is the output of following program?

#include <stdio.h>

int main()

{

 int a = 10;

 printf("%d\n", 2 + a++);

 printf("%d\n", 2 + ++a);

 return 0;

}

5. What is the output of following program?

#include <stdio.h>

int main()

{

 int a, b, c;

 printf("%d\n", scanf("%d %d %d",&a,&b,&c));

 return 0;

}

6. What is the output of following program?

#include <stdio.h>

int main()

{

 printf("50%% + 50%% = 100%%\n");

 return 0;

}

7. What is the output of following program?

#include <stdio.h>

int main()

{

 int x = 1234;

 printf("%d", printf("%d", printf("%d", x)));

 return 0;

}

8. What is the output of following program?

#include <stdio.h>

int main()

{

 int i = 5;

 printf("%d %d %d", i, ++i, i++);

 return 0;

}

9. What is the output of following program?

#include <stdio.h>

int main()

{

 int i = 3;

 printf("%d\n", i++ + ++i);

 return 0;

}

10. What is the output of following program?

#include <stdio.h>

int a, b;

int main(void)

{

 a = 3; b = 5;

 a = a + b;

 b = a + b;

 printf("%d\n", a + b);

 return 0;

}

11. What is the output of following program?

#include <stdio.h>

int a, b;

int main(void)

{

 a = 5; b = 3;

 a = a * b / 4;

 b = b * a % 5;

 printf("%d\n", a + b);

 return 0;

}

HINTS

1. The printf function returns the number of characters successfully printed on the

screen. The string "Hello World!" has 12 characters, so the first printf prints Hello

World! and returns 12.

answer: Hello World!12

2. The printf function returns the number of characters successfully printed on the

screen.

answer: 12344

3. All the arguments of printf() are evaluated irrespective of whether they get

printed or not. That’s why (b=a+2) would also be evaluated and value of b would be 12

after first printf().

answer: =11 12=

4. First printf statement prints 2 + 10 as output. Then ++ will increment the a

value, a becomes 11.

Second printf statement prints 2 + 12 as output. First increment a, then use a in

expression 2 + a.

answer:

12

14

5. scanf returns the number of inputs it has successfully read.

answer: 3

6. we can print “%” using “%%”

7.

answer: 123441

8. Depends on compiler

answer: 7 7 5 (my compiler, evaluates from right to left)

9. Depends on compiler. If you modify a variable more than one time in a single

statement the behavior is undefined according to the C standard.

As usually, evaluation runs from left to right.

First summand equals to 3, then i is increased by 1 and becomes 4.

Second summand: i is increased by 1 first (i = 5) and then used in expression

answer: 3+ 5 = 8

10. answer: 21
a = 3; b = 5;

a = a + b; // a = 8, b = 5

b = a + b; // a = 8, b = 13

printf("%d\n", a + b); // a + b = 21

11. answer: 7
a = 5; b = 3;

a = a * b / 4; // a = 3, b = 3

b = b * a % 5; // a = 3, b = 4

printf("%d\n", a + b); // a + b = 7

