Conditional statement
The ability to control the flow of your program, letting it make decisions on what code to execute, is valuable to the programmer. The if statement allows you to control if a program enters a section of code or not based on whether a given condition is true or false. One of the important functions of the if statement is that it allows the program to select an action based upon the user's input. For example, by using an if statement to check a user-entered password, your program can decide whether a user is allowed access to the program.

An if statement consists of a Boolean expression (condition) followed by one or more statements:
	if (condition) statement;

	if (condition)

{

 statement_1;

 . . .

 statement_n;

 }

If the condition evaluates to true, then the if block will be executed

[image: image1.emf]true

statement

false

true

statement_1

false

statement_n

condition

condition

The next program prints "Less than 10" if the input value of x is less than 10. If the value of x is greater or equal to 10, nothing will be printed.
#include <stdio.h>

int x;

int main(void)

{

 scanf("%d", &x);

 if (x < 10) printf("Less than 10\n");

 return 0;

}

	Real world expression
	C notation

	if
[image: image2.wmf]4

>

x

, then . . .
	if (x > 4) . . .

	if
[image: image3.wmf]4

³

x

, then . . .
	if (x >= 4) . . .

	if
[image: image4.wmf]6

<

x

, then . . .
	if (x < 6) . . .

	if
[image: image5.wmf]6

£

x

, then . . .
	if (x <= 6) . . .

	if
[image: image6.wmf]7

=

x

, then . . .
	if (x == 7) . . .

	if
[image: image7.wmf]9

¹

x

, then . . .
	if (x != 9) . . .

Consider some samples of conditional statements:

	if (x <= 0) y = x + 2;

	if x is less or equal to 0, assign to y the value of x + 2

	if (a == b) y = a + b;

	if a and b are equal, assign to y the sum of a and b

	if (x != a + 3) y = a;

	if x does not equal to a + 3, assign to y the value of a

An if statement can be followed by an optional else statement, which executes when the condition is false:

	if (condition)

 statement_1;

else

 statement_2;

If the condition evaluates to true, then the if block will be executed, otherwise, the else block will be executed.

[image: image8.emf]true

statement_1

false

condition

statement_2

#include <stdio.h>

int main(void)

{

 int a = 10, b = 4;

 printf("a = %d, b = %d\n",a,b);

 // greater than example

 if (a > b)

 printf("a is greater than b\n");

 else

 printf("a is less than or equal to b\n");

 // lesser than equal to

 if (a <= b)

 printf("a is lesser than or equal to b\n");

 else

 printf("a is greater than b\n");

 // not equal to

 if (a != b)

 printf("a is not equal to b\n");

 else

 printf("a is equal b\n");

 return 0;

}

The next program evaluates the expression:

y =
[image: image9.wmf]î

í

ì

³

<

+

0

,

0

,

4

2

x

x

x

x

#include <stdio.h>

int x, y;

int main(void)

{

 scanf("%d", &x);

 if (x < 0) y = x + 4; else y = x * x;

 printf("%d\n",y);

 return 0;

}

E-OLYMP 8520. Conditional statement - 1 Find the value of y according to condition:

[image: image10.wmf]î

í

ì

³

+

<

+

-

=

5

7

5

,

4

3

2

x

,

x

x

x

x

y

► Use conditional statement. As -1000 ≤ x ≤ 1000, int type is enough.
E-OLYMP 8521. Conditional statement - 2 Find the value of y according to condition:

[image: image11.wmf]ï

î

ï

í

ì

<

+

-

³

+

=

10

4

2

10

,

5

2

3

x

,

x

x

x

x

x

y

► Use conditional statement. As x ≤ 10000 = 104, then x3 ≤ 1012. So we need to use long long type.
E-OLYMP 8612. Conditional statement - 4 Find the value of y according to condition:

[image: image12.wmf]ï

î

ï

í

ì

<

-

³

-

+

+

=

0

7

0

,

6

4

2

3

2

3

x

x,

x

x

x

x

x

y

► Use conditional statement.
E-OLYMP 8613. Conditional statement - 5 Find the value of y according to condition:

[image: image13.wmf]ï

î

ï

í

ì

<

-

-

-

³

+

+

+

=

13

4

3

2

3

13

,

6

5

4

3

2

3

2

3

x

,

x

x

x

x

x

x

x

y

► Use conditional statement.
E-OLYMP 2606. Minimum and maximum Find minimum and maximum between two positive integers.
► Use conditional statement to compare a and b. If a is bigger than b, assign res to a. Otherwise assign res to b.
E-OLYMP 8611. Water and Ice The temperature of the air is t degrees. Print “Water” if t is positive and “Ice” otherwise.
► If t > 0 print “Water”, otherwise print “Ice”.
A conditional branch is a statement that causes the program to change the path of execution based on the value of an expression. Consider the following program:

[image: image26.wmf]true

B

false

condition

C

A

D

int main(void)

{

 // do A

 if (condition)

 // do B

 else

 // do C

 // do D

 return 0;

}

This program has two possible paths. If condition evaluates to true, the program will execute A, B, and D. If condition evaluates to false, the program will execute A, C, and D. As you can see, this program is no longer a straight-line program – its path of execution depends on the value of expression.

Here is a simple program that uses both if and else block:

#include <stdio.h>

int x;

int main(void)

{

 printf("Enter the number: ");

 scanf("%d",&x);

 if (x < 10)

 printf("%d is less than 10\n",x);

 else

 printf("%d is not less than 10\n",x);

 return 0;

}

Logical Operators are used to combine two or more conditions/constraints or to complement the evaluation of the original condition in consideration.

[image: image14.emf]operator C notation

x and y x && y

x or y x ||y

not x !x

x xor y x^ y

· Logical AND: The ‘&&’ operator returns true when both the conditions in consideration are satisfied. Otherwise it returns false. For example, a && b returns true when both a and b are true (i.e. non-zero).

· Logical OR: The ‘||’ operator returns true when one (or both) of the conditions in consideration is satisfied. Otherwise it returns false. For example, a || b returns true if one of a or b is true (i.e. non-zero). Of course, it returns true when both a and b are true.

· Logical NOT: The ‘!’ operator returns true the condition in consideration is not satisfied. Otherwise it returns false. For example, !a returns true if a is false, i.e. when a = 0.

The truth tables for logical operators are given below:

	x
	y
	x and y
	
	x
	y
	x or y
	
	x
	not x
	
	x
	y
	x xor y

	0
	0
	0
	
	0
	0
	0
	
	0
	1
	
	0
	0
	0

	0
	1
	0
	
	0
	1
	1
	
	1
	0
	
	0
	1
	1

	1
	0
	0
	
	1
	0
	1
	
	
	
	
	1
	0
	1

	1
	1
	1
	
	1
	1
	1
	
	
	
	
	1
	1
	0

[image: image15.emf]a b

a && b

a

b

a || b

Check if the value x ((1; 5):

if (x > 1 && x < 5) ...
Check if the value x ((-∞; 1]
[image: image16.wmf]È

 [5; +∞):

if (x <= 1 || x >= 5) ...

Check if the value x ({3, 4, 8}:

if (x == 3 || x == 4 || x == 8) ...

Check if the value of variables a, b, c are the same:

if (a == b && b == c)

E-OLYMP 8614. Inside the interval Determine whether the number x belongs to the interval [a; b]. Number x belongs to the interval [a; b] if a ≤ x ≤ b.
► In C language its not possible to write a condition a ≤ x ≤ b directly. Use and (&&) notation for conditions a ≤ x and x ≤ b.
E-OLYMP 8615. Outside the interval Determine whether the number x is located outside the interval [a; b]. Number x is located outside the interval [a; b] if either x < a or x > b.
► Use or (||) notation for conditions x < a and x > b.
E-OLYMP 8873. One-digit number Integer n is given. Print Ok, if n is one-digit number and No otherwise.
► n is one-digit number if -9 ≤ n ≤ 9. Implement this condition.
Compound Conditional Statement

This allows you to create expressions that contain order-of-precedence grouping without having to use parentheses. The evaluative or statement is hidden inside the conditional statement, as long as that conditional statement can evaluate against multiple criteria.

Check if triange with sides a, b, c is right (use Pythagorean theorem: the sum of squares of two sides equals to the square of the third side):

if ((a * a + b * b == c * c) ||

 (a * a + c * c == b * b) ||

 (b * b + c * c == a * a))

Check if there exists a non degenerate triangle with sides a, b, c (the sum of any two sides must be more than the third side):
if (a < b + c && b < a + c && c < a + b)

E-OLYMP 8372. Create a triangle Can we construct a triangle from segments of length a, b, c?
► The triangle is non-degenerative if the sum of any two sides is more than the third side.
E-OLYMP 915. Rectangular or not? There is a triangle with sides a, b, c. Is this triangle rectangular?
► The triangle is rectangular if the sum of squares of two sides equals to the square of the third side (Pythagorean theorem).
E-OLYMP 8874. Two-digit number Integer n is given. Print Ok, if n is two-digit number and No otherwise.
► n is two-digit number if -99 ≤ n ≤ -10 or 10 ≤ n ≤ 99. We need to write the compound condition:

if ((n >= -99 && n <= -10) || (n >= 10 && n <= 99))
E-OLYMP 6278. City numbers Determine if the houses with numbers n and m are located on one side of the street.
► The answer is affirmative if n and m have the same parity: either both even or both odd. The conditional statement looks like:
if ((n is even and m is even) || (n is odd and m is odd))
Second solution is based on the fact that two numbers have the same parity if their sum is even.
E-OLYMP 8864. Numbers of the same sign Determine if numbers n and m have the same sign.

► Numbers n and m have the same sign if either they both positive or both negative. This condition can be simplified: the answer is affirmative if the product of n and m is positive.
Using if with multiple statements

Note that the if statement only executes a single statement if the expression is true, and the else only executes a single statement if the expression is false. In order to execute multiple statements, we can use a block:

#include <stdio.h>

int main(void)

{

 int x;

 scanf("%d",&x);

 if (x < 10)

 {

 printf("You entered %d\n",x);

 printf("%d is less than 10\n",x);

 }

 else

 {

 printf("You entered %d\n",x);

 printf("%d is not less than 10\n",x);

 }

 return 0;

}

Chaining if statements

It is possible to chain if-else statements together:

[image: image17.wmf]ï

î

ï

í

ì

³

-

<

£

<

+

=

10

,

4

10

0

,

0

,

1

)

(

2

x

x

x

x

x

x

x

y

#include <stdio.h>

double x, y;

int main(void)

{

 scanf("%lf", &x);

 if (x < 0) y = x + 1; else

 if (x < 10) y = x * x; else y = x - 4;

 printf("%lf\n", y);

 return 0;

}

E-OLYMP 8526. Conditional statement - 3 Find the value of y according to condition:

[image: image18.wmf]ï

î

ï

í

ì

>

+

£

£

-

-

-

<

+

=

7

2

7

4

,

3

4

,

5

3

2

x

x,

x

x

x

x

x

x

y

► Use chained if-else statements.
E-OLYMP 8608. sgn function Find the value of sgn function:

[image: image19.wmf]ï

î

ï

í

ì

<

-

=

>

=

0

1

0

,

0

0

,

1

)

sgn(

x

,

x

x

x

► Use chained if-else statements.
Nesting if statements

It is also possible to nest if statements within other if statements.

Three numbers are given. Find and print the maximum among them.

#include <stdio.h>

int a, b, c, max;

int main(void)

{

 scanf("%d %d %d",&a,&b,&c);

 if (a > b)

 if (c > a) max = c; else max = a;

 else

 if (c > b) max = c; else max = b;

 printf("%d\n",max);

 return 0;

}

Divisibility
Number x is divisible by 2 if the remainder after dividing x by 2 is 0:

#include <stdio.h>

int x;

int main(void)

{

 scanf("%d", &x);

 if (x % 2 == 0)

 printf("%d is even\n",x);

 else

 printf("%d is odd\n",x);

 return 0;

}

Check if the number x is divisible by a and by b:

if (x % a == 0 && x % b == 0)
E-OLYMP 8371. Even or Odd Given positive integer n. Determine is it even or odd.
► n is even if it is divisible by 2.
E-OLYMP 8522. Divisibility Given positive integers a and b. Check if a is divisible by b.
► a is divisible by b means that the remainder after dividing a by b is 0.
E-OLYMP 8531. Divisibility by numbers Given positive integer n. Is is divisible simultaneously by a and by b?
► Use and (&&) for conditions that n is divisible by a and n is divisible by b.
Minimum and maximum

Write a code to find the maximum of four numbers a, b, c, d.

Let res = max(a, b, c, d). Assign initially a to res. Then compare each of the next numbers with res. If some number is greater than res, update res.

#include <stdio.h>

int a, b, c, d, res;

int main(void)

{

 scanf("%d %d %d %d",&a,&b,&c,&d);

 res = a;

 if (b > res) res = b;

 if (c > res) res = c;

 if (d > res) res = d;

 printf("%d\n",res);

 return 0;

}

E-OLYMP 7812. Maximum among four numbers Four numbers a, b, c, d are given. Find the maximum among them.
► Let res be the maximum. Initialize res with a. Compare b, c and d with res and update res.
E-OLYMP 3867. Lazy Misha Three integers t1, t2, t3 are given. Find the minimum among them.
► Use conditional statement to find minimum among three numbers.
Ceiling & floor operations
If x and y are integers, the floor operation
[image: image20.wmf]ë

û

y

x

/

 is just simply x / y (integer division). For example 15 / 4 = 3, 15 / 7 = 2.
The ceiling operation can be calculated like
[image: image21.wmf]é

ù

y

x

/

 =
[image: image22.wmf]ë

û

y

y

x

/

)

1

(

-

+

. Another way to find res =
[image: image23.wmf]é

ù

y

x

/

 is:

· assign res = x / y;

· if x is not divisible by y, add 1 to res: if (x % y > 0) res++;
#include <stdio.h>

int x, y, res;

int main(void)

{

 x = 16; y = 3;

 res = x / y;

 if (x % y > 0) res++;

 printf("%d\n",res); // ceil(x/y)
 return 0;

}
Сeiling operation can be written in C like

[image: image24.wmf]é

ù

y

x

/

 = x / y + bool(x % y),
where bool(x) equals to
· 0 (false), if x = 0;

· 1 (true), if x ≠ 0;

Conditional ?: operator

The ternary operator (?:) is a very useful conditional expression used in C. It's effects are similar to the if statement but with some major advantages.

The basic syntax of using the ternary operator is thus:

(condition) ? (if_true) : (if_false)

Which is basically the same as:

if (condition)

 if_true;

else

 if_false;

The value of a ?: expression is determined like this: condition is evaluated. If it is true, then if_true is evaluated and becomes the value of the entire ?: expression. If condition is false, then if_false is evaluated and its value becomes the value of the expression.

The ?: is called a ternary operator because it requires three operands and can be used to replace if-else statements.

For example, consider the following code:
if (y < 10)
 var = 30;

else
 var = 40;

Above code can be rewritten like this:
var = (y < 10) ? 30 : 40;
Here var is assigned the value of 30 if y is less than 10 and 40 if it is not.

Let’s evaluate the expression

y =
[image: image25.wmf]î

í

ì

³

<

+

0

,

0

,

4

2

x

x

x

x

using the ?: operator:
#include <stdio.h>

int x, y;

int main(void)

{

 scanf("%d", &x);

 y = (x < 0) ? x + 4 : x * x;

 printf("%d\n",y);

 return 0;

}

Find the minimum and maximum of two numbers:

#include <stdio.h>

int a, b, min, max;

int main(void)

{

 scanf("%d %d",&a,&b);

 min = (a < b) ? a : b;

 max = (a > b) ? a : b;

 printf("%d %d\n",min,max);

 return 0;

}

� EMBED Visio.Drawing.11 ���

[image: image27.wmf]true

B

false

condition

C

A

D

_1577455861.unknown

_1591338109.unknown

_1592929921.unknown

_1601747278.unknown

_1637869109.vsd
operator

C notation

x and y

x && y

x or y

x || y

not x

!x

x xor y

x ^ y

_1637943311.unknown

_1601743611.unknown

_1591345444.unknown

_1591784833.vsd
a

b

a && b

a

b

a || b

_1591783358.vsd
true

B

false

condition

C

A

D

_1591295060.vsd
condition

condition

true

statement

false

true

statement_1

false

statement_n

_1591297234.vsd
true

statement_1

false

condition

statement_2

_1591297424.unknown

_1577455981.unknown

_1577455989.unknown

_1319722839.unknown

_1567446981.unknown

_1577297497.unknown

_1319722878.unknown

_1319722612.unknown

_1319722674.unknown

_1319722699.unknown

_1319722564.unknown

