Interface
An interface describes the behavior or capabilities of a class without committing to a particular implementation of that class.

interface is a class with only pure virtual methods (i.e. without any code). A pure virtual function is specified by placing "= 0" in its declaration. Pure virtual functions are actually functions which have no implementation in base class and have to be implemented in derived class.

__interface Shape

{

public:

 virtual int getArea() = 0;

 virtual void setWidth(int width) = 0;

 virtual void setHeight(int height) = 0;

};

Data members in interface are implicitly public static final, so you can only inherit them, not able to overwrite them. They act like constants. If you declare data members in interface it will be automatically declared as final, value of which can’t be changed in a program.

Abstract Class
An abstract class is a class that cannot be instantiated and is usually implemented as a class that has one or more pure virtual (abstract) functions. A pure virtual function is one which must be overridden by any concrete (i.e., non-abstract) derived class.
In general an abstract class is used to define an implementation and is intended to be inherited from by concrete classes. It's a way of forcing a contract between the class designer and the users of that class. If we wish to create a concrete class (a class that can be instantiated) from an abstract class we must declare and define a matching member function for each abstract member function of the base class. Otherwise, if any member function of the base class is left undefined, we will create a new abstract class (this could be useful sometimes).

The interfaces are implemented using abstract classes.
class Shape

{

protected:

 int width;

 int height;

public:

 virtual int getArea() = 0;

 void setWidth(int width)

 {

 this->width = width;

 }

 void setHeight(int height)

 {

 this->height = height;

 }

};

The purpose of an abstract class (often referred to as an ABC) is to provide an appropriate base class from which other classes can inherit. Abstract classes cannot be used to instantiate objects and serves only as an interface. Attempting to instantiate an object of an abstract class causes a compilation error.

Thus, if a subclass of an ABC needs to be instantiated, it has to implement each of the virtual functions, which means that it supports the interface declared by the ABC. Failure to override a pure virtual function in a derived class, then attempting to instantiate objects of that class, is a compilation error.

Classes that can be used to instantiate objects are called concrete classes.

Abstract Class Example

You can see how an abstract class defined an interface in terms of getArea() and two other classes implemented same function but with different algorithm to calculate the area specific to the shape.

#include <stdio.h>

// Base class

class Shape

{

protected:

 int width;

 int height;

public:

 virtual int getArea() = 0;

 void setWidth(int width)

 {

 this->width = width;

 }

 void setHeight(int height)

 {

 this->height = height;

 }

};

// Derived classes

class Rectangle: public Shape

{

public:

 int getArea(void)

 {

 return (width * height);

 }

};

class Triangle: public Shape

{

public:

 int getArea(void)

 {

 return (width * height) / 2;

 }

};

int main(void)

{

 Rectangle Rect;

 Triangle Tri;

 Rect.setWidth(5);

 Rect.setHeight(8);

 // Print the area of the object.

 printf("Total Rectangle area: %d\n",Rect.getArea());

 Tri.setWidth(5);

 Tri.setHeight(8);

 // Print the area of the object.

 printf("Total Triangle area: %d\n",Tri.getArea());

 return 0;

}

[image: image1.png]“Svidth: int
‘#heights int

¥setWidth(width)
+Setriightlheight)
+oethveal): int

Triangle

An object-oriented system might use an abstract base class to provide a common and standardized interface appropriate for all the external applications. Then, through inheritance from that abstract base class, derived classes are formed that all operate similarly.

The capabilities (i.e., the public functions) offered by the external applications are provided as pure virtual functions in the abstract base class. The implementations of these pure virtual functions are provided in the derived classes that correspond to the specific types of the application.

This architecture also allows new applications to be added to a system easily, even after the system has been defined.

Example Openable

#include <stdio.h>

// Interface class iOpenable. Allows to open/close something

__interface iOpenable

{

public:

 virtual void open() = 0;

 virtual void close() = 0;

};

class Door: public iOpenable

{

public:

 // Specific properties and methods for class Door

 int mColor;

 int mWeight;

 Door()

 {

 printf("Door object created\n");

 }

 // Methods realization for interface iOpenable for class Door

 void open(){printf("Door opened\n");}

 void close(){printf("Door closed\n");}

};

class Book: public iOpenable

{

 public:

 Book()

 {

 printf("Book object created\n");

 }

 // Methods realization for interface iOpenable for class Book

 void open() {printf("Book opened\n");}

 void close() {printf("Book closed\n");}

};

void openAndCloseSomething(iOpenable& smth)

{

 smth.open();

 smth.close();

}

int main(void)

{

 Door myDoor;

 Book myBook;

 openAndCloseSomething(myDoor);

 openAndCloseSomething(myBook);

 return 0;

}

Interfaces vs. Abstract Classes

	
	Variables
	Constructors
	Methods

	Abstract Class
	No restrictions
	Constructors are invoked by subclasses through constructor chaining, even though an abstract class can't be instantiated using the new operator.
	No restrictions

	Interface
	All variables must be public static final (const)
	No constructors. An interface cannot be instantiated using the new operator
	All methods must be public abstract instance methods

Any interface is an abstract class, but not vice versa.

Example Square, Circle

#include <stdio.h>

class Shape

{

public:

 virtual double area() = 0;

};

class Square: public Shape

{

private:

 double a;

public:

 Square(double a = 1): a(a) {}

 double area() { return a * a; }

};

class Circle: public Shape

{

private:

 double r;

public:

 Circle(double r = 1): r(r) { }

 double area() { return 3.14159265358 * r * r; }

};

int main(void)

{

 Shape *shapes[5];

 shapes[0] = new Circle (3);

 shapes[1] = new Square (2);

 shapes[2] = new Square (2.5);

 shapes[3] = new Circle (5);

 shapes[4] = new Circle (10);

 for (int i = 0; i < 5; ++i)

 printf("%lf\n",shapes[i]->area());

 for (int i = 0; i < 5; ++i)

 delete shapes[i];

 return 0;

}

