Linked Lists
An array is a very useful data structure provided in programming languages. However, it has at least two limitations:

· its size has to be known at compilation time and

· the data in the array are separated in computer memory by the same distance, which means that inserting an item inside the array requires shifting other data in this array.

This limitation can be overcome by using linked structures. A linked structure is a collection of nodes storing data and links to other nodes. In this way, nodes can be located anywhere in memory, and passing from one node of the linked structure to another is accomplished by storing the addresses of other nodes in the linked structure. Although linked structures can be implemented in a variety of ways, the most flexible implementation is by using pointers.

Singly Linked Lists
If a node contains a data member that is a pointer to another node, then many nodes can be strung together using only one variable to access the entire sequence of nodes. Such a sequence of nodes is the most frequently used implementation of a linked list, which is a data structure composed of nodes, each node holding some information and a pointer to another node in the list. If a node has a link only to its successor in this sequence, the list is called a singly linked list.
Each node in the list is an instance of the following class definition:

[image: image1.emf]p101530

null

class Node

{

public:

 int data;

 Node *next;

 Node() : next(NULL) {};

 Node(int data, Node *next = NULL) : data(data), next(next) {};

};

A node includes two data members: data and next. The data member is used to store information, and this member is important to the user. The next member is used to link nodes to form a linked list. It is an auxiliary data member used to maintain the linked list. It is indispensable for implementation of the linked list, but less important (if at all) from the user’s perspective. Note that Node is defined in terms of itself because one data member, next, is a pointer to a node of the same type that is just being defined. Objects that include such a data member are called self-referential objects.
The definition of a node also includes two constructors:

· the first constructor initializes the next pointer to null and leaves the value of data unspecified.

· the second constructor takes two arguments: one to initialize the data member and another to initialize the next member. The second constructor also covers the case when only one numerical argument is supplied by the user. In this case, data is initialized to the argument and next to null.
Let us create the next linked list:

[image: image21.wmf]p

10

null

One way to create this three-node linked list is to first generate the node for number 10, then the node for 15, and finally the node for 30. Each node has to be initialized properly and incorporated into the list.
Create the first node on the list and make the variable p a pointer to this node:
Node *p = new Node(10);
[image: image18.wmf]data

next

This done in four steps:

· Create a new Node;

· The data member of this node is set to 10;

· the node’s next member is set to null;
· make p a pointer to the newly created node. This pointer is the address of the node, and it is shown as an arrow from the variable p to the new node.
The second node is created with the assignment:

p->next = new Node(15);
Here p->next is the next member of the node pointed to by p. Note that the data members of nodes pointed to by p are accessed using the arrow notation, which is clearer than using a dot notation, as in (*p).next.

[image: image2.emf]p1015

null

The linked list is now extended by adding a third node with the assignment
p->next->next = new Node(30);
Here p->next->next is the next member of the second node. This cumbersome notation has to be used because the list is accessible only through the variable p.
Our linked list example illustrates a certain inconvenience in using pointers: the longer the linked list, the longer the chain of nexts to access the nodes at the end of the list. In this example, p->next->next->next allows us to access the next member of the 3rd node on the list. But what if it were the 103rd or, worse, the 1,003rd node on the list? Typing 1,003 nexts, as in p->next->. . .->next, would be daunting. If we missed one next in this chain, then a wrong assignment is made. Also, the flexibility of using linked lists is diminished. Therefore, other ways of accessing nodes in linked lists are needed.
One way is always to keep two pointers to the linked list: one to the first node and one to the last:

[image: image3.emf]head

101530

null

tail

The singly linked list implementation uses two classes: one class, Node, for nodes of the list, and another, List, for access to the list. The class List defines two data members, head and tail, which are pointers to the first and the last nodes of a list. Method Empty() checks if the list is empty:

class List

{

public:

 Node *head, *tail;

 List() : head(NULL), tail(NULL) {};
 int Empty()

 {

 return head == NULL;

 }

};
Besides the head and tail members, the class List also defines member functions that allow us to manipulate the lists. We now look more closely at some basic operations on linked lists.
The list is declared with the statement:
List list;
Insertion
Adding a node at the beginning of a linked list is performed in four steps:

1. An empty node is created. It is empty in the sense that the program performing insertion does not assign any values to the data members of the node.

[image: image4.emf]head

101530

null

tail

2. The node’s info member is initialized to a particular integer.

[image: image5.emf]head

101530

null

tail

5

3. Because the node is being included at the front of the list, the next member becomes a pointer to the first node on the list; that is, the current value of head.

[image: image6.emf]head

101530

null

tail

5

4. The new node precedes all the nodes on the list, but this fact has to be reflected in the value of head; otherwise, the new node is not accessible. Therefore, head is updated to become the pointer to the new node.

[image: image7.emf]head

101530

null

tail

5

The four steps are executed by the member function addToHead():

void addToHead(int val)

{

 head = new Node(val,head);

 if (tail == NULL) tail = head;

}
Second (more understandable) version:

void addToHead(int val)

{

 if (tail == NULL) // list is empty

 head = tail = new Node(val);

 else

 {

 Node *temp = new Node(val);

 temp->next = head;

 head = temp;

 }

}

The function executes the first three steps indirectly by calling the constructor Node (val, head). The last step is executed directly in the function by assigning the address of the newly created node to head. The member function addToHead() singles out one special case, namely, inserting a new node in an empty linked list. In an empty linked list, both head and tail are null; therefore, both become pointers to the only node of the new list. When inserting in a nonempty list, only head needs to be updated.
The process of adding a new node to the end of the list has five steps.

1. An empty node is created.

[image: image8.emf]head

101530

null

tail

2. The node’s info member is initialized to an integer val.

[image: image9.emf]head

101530

null

tail

40

3. Because the node is being included at the end of the list, the next member is set to null.

[image: image10.emf]head

101530

null

tail

40

nill

4. The node is now included in the list by making the next member of the last node of the list a pointer to the newly created node.

[image: image11.emf]head

101530

tail

40

nill

5. The new node follows all the nodes of the list, but this fact has to be reflected in the value of tail, which now becomes the pointer to the new node.

[image: image12.emf]head

101530

tail

40

nill

void addToTail(int val)

{

 if (tail != NULL) // list is not empty

 {

 tail->next = new Node(val);

 tail = tail->next;

 }

 else head = tail = new Node(val);

}
All these steps are executed in the if clause of addToTail(). The else clause of this function is executed only if the linked list is empty. If this case were not included, the program may crash because in the if clause we make an assignment to the next member of the node referred by tail. In the case of an empty linked list, it is a pointer to a nonexisting data member of a nonexisting node.
Deletion

First we consider deletion a node from the beginning of the list. Function returns 1 is deletion is successful, otherwise 0. There are now two special cases to consider:

· One case is when we attempt to remove a node from an empty linked list. If such an attempt is made, the program is very likely to crash, which we don’t want to happen. So in this case we do nothing, but simply return 0.

· The second special case is when the list has only one node to be removed. In this case, the list becomes empty, which requires setting tail and head to null.
int deleteFromHead(void)

{

 if (Empty()) return 0;

 Node *temp = head;

 if (head == tail) // only one node in a list

 head = tail = NULL;

 else head = head->next;

 delete temp;

 return 1;

}

Now consider the process of deleting a node from the end of the list. It is implemented as the member function deleteFromTail(). The problem is that after removing a node, tail should refer to the new tail of the list; that is, tail has to be moved backward by one node. But moving backward is impossible because there is no direct link from the last node to its predecessor. Hence, this predecessor has to be found by searching from the beginning of the list and stopping right before tail. This is accomplished with a temporary variable temp that scans the list within the for loop. The variable temp is initialized to the head of the list, and then in each iteration of the loop it is advanced to the next node.
In removing the last node, the two special cases are the same as in deleteFromHead():

· If the list is empty, then nothing can be removed;

· When a single-node list becomes empty after removing its only node, which also requires setting head and tail to null.

int deleteFromTail(void)

{

 if (Empty()) return 0;

 if (head == tail) // only one node in a list

 {

 delete head;

 head = tail = NULL;

 }

 else // if more than one node in the list

 {

 Node *temp; // find the predecessor of tail

 for(temp = head; temp->next != tail; temp = temp ->next);

 delete tail;

 tail = temp; // the predecessor of tail becomes tail

 tail->next = NULL;

 }

 return 1;

}
Consider the list, where temp first refers to the head node holding number 10:

[image: image13.emf]head

101530

null

tail

temp

After executing the assignment temp = temp->next, temp refers to the second node:

[image: image14.emf]head

101530

null

tail

temp

Because this node is the next to last node, the loop is exited, after which the last node is deleted:

[image: image15.emf]head

1015

tail

temp

Because tail is now pointing to a nonexisting node, it is immediately set to point to the next to last node currently pointed to by temp:

[image: image16.emf]head

1015

tail

temp

To mark the fact that it is the last node of the list, the next member of this node is set to null:

[image: image17.emf]head

1015

null

tail

temp

The most time-consuming part of deleteFromTail() is finding the next to last node performed by the for loop. It is clear that the loop performs n – 1 iterations in a list of n nodes, which is the main reason this member function takes O(n) time to delete the last node.
#include <stdio.h>

class Node

{

public:

 int data;

 Node *next;

 Node() : next(NULL) {};

 Node(int data, Node *next = NULL) : data(data), next(next) {};

};

class List

{

public:

 Node *head, *tail;

 List() : head(NULL), tail(NULL) {};

 int Empty()

 {

 return head == NULL;

 }

 void addToHead(int val)

 {

 if (tail == NULL) // list is empty

 head = tail = new Node(val);

 else

 {

 Node *temp = new Node(val);

 temp->next = head;

 head = temp;

 }

 }

 void addToTail(int val)

 {

 if (tail != NULL) // list is not empty

 {

 tail->next = new Node(val);

 tail = tail->next;

 }

 else head = tail = new Node(val);

 }

 int deleteFromHead(void)

 {

 if (Empty()) return 0;

 Node *temp = head;

 if (head == tail) // only one node in a list

 head = tail = NULL;

 else head = head->next;

 delete temp;

 return 1;

 }

 int deleteFromTail(void)

 {

 if (Empty()) return 0;

 if (head == tail) // only one node in a list

 {

 delete head;

 head = tail = NULL;

 }

 else // if more than one node in the list

 {

 Node *temp; // find the predecessor of tail

 for(temp = head; temp->next != tail; temp = temp ->next);

 delete tail;

 tail = temp; // the predecessor of tail becomes tail

 tail->next = NULL;

 }

 return 1;

 }

 void Print(void)

 {

 Node *node = head;

 while(node != NULL)

 {

 printf("%d ",node->data);

 node = node->next;

 }

 printf("\n");

 }

};

int main(void)

{

 List *list = new List();

 list->addToHead(30); list->Print();

 list->addToHead(15); list->Print();

 list->addToTail(40); list->Print();

 list->addToHead(10); list->Print();

 list->deleteFromHead(); list->Print();

 list->deleteFromTail(); list->Print();

 return 0;

}

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

[image: image19.wmf]p

10

null

[image: image20.wmf]data

next

_1503341173.vsd
head

10

15

30

null

tail

_1503341423.vsd
head

10

15

30

tail

40

nill

_1503429082.vsd
head

10

15

30

null

tail

temp

_1503429569.vsd
head

10

15

tail

temp

_1503429608.vsd
head

10

15

null

tail

temp

_1503429415.vsd
head

10

15

tail

temp

_1503428857.vsd
head

10

15

30

null

tail

temp

_1503341211.vsd
head

10

15

30

null

tail

40

nill

_1503341361.vsd
head

10

15

30

tail

40

nill

_1503341204.vsd
head

10

15

30

null

tail

40

_1503338264.vsd
head

10

15

30

null

tail

_1503338329.vsd
head

10

15

30

null

5

tail

_1503338462.vsd
head

10

15

30

null

tail

5

_1503338305.vsd
head

10

15

30

null

5

tail

_1503325128.vsd
p

10

15

null

_1503325806.vsd
head

10

15

30

null

tail

_1503255599.vsd
data

next

_1503256015.vsd
p

10

null

_1503255481.vsd
p

10

15

30

null

