FORMATTED INPUT/OUTPUT : PRINTF / SCANF
Input / output functions printf / scanf are declared in
#include <stdio.h>
· Function printf prints the formatted output to stdout;
· Function scanf reads the formatted input from stdin;
	TYPE DESCRIPTION
	TYPE
	FORMAT

	integer, 4 bytes
	int
	%d

	integer, 8 bytes
	__int64
	%I64d

	integer, 8 bytes
	long long
	%lld

	real, 4 bytes
	float
	%f

	real, 8 bytes
	double
	%lf

	character, 1 byte
	char
	%c

	string, array of chars
	char[]
	%s

Let x = 34 is an integer. To print the value of the variable, we use the function
printf("%d",x);
If we want to print the value in n positions, we use format %nd. If the number contains less than n digits, the spaces will be added befor the number. Next example prints 3 spaces before number 34 (we print 5 characters in total):

printf("%5d",x);
Formatting with spaces can be used for example in printing the multiplication table. Each number is printed in 2 positions. If number is one-digit, a space is printed before it.

#include <stdio.h>

int i, j;

int main(void)

{

 for(i = 1; i < 10; i++)

 {

 for(j = 1; j < 10; j++)

 printf("%2d ",i*j);

 printf("\n");

 }

 return 0;

}

Printing the time. Let h contains the hours, m contains the minutes and s contains the seconds. We want to print the time in digital format like “12:45:23”, printing each number in 2 positions. But if some number is less than 10, using the format %2d we’ll get something like “ 2: 5: 0” (2 hours, 5 minutes and 0 seconds). In a real digital clock we must print 0 instead of spaces: “02:05:00”. To solve this problem we must use format %02d. Zero symbol before 2 means that instead of spaces at extra positions we must print zeroes.
#include <stdio.h>

int h = 2, m = 5, s = 0;

int main(void)

{

 printf("%02d:%02d:%02d\n",h,m,s);

 return 0;

}

If we want to read the data in digital clock format, we can use the format
scanf("%d:%d:%d",&h,&m,&s);
SINGLE AND MULTIPLE INPUT/OUTPUT

Solving the problems, one must distinguish the single input and multiple input. If the input contains only one test, we speak about “single input”. If the input contains data for some tests, we say then the problem has “multiple input”. Consider the examples.

Example. Two numbers are given. Find their sum.
	Sample input
	Sample output

	3 4
	7

Solution. To solve this problem, its enough to input two numbers, find their sum and output the result.

#include <stdio.h>

int a, b, res;

int main(void)

{

 scanf("%d %d",&a,&b);

 res = a + b;

 printf("%d + %d = %d\n", a, b, res);

 return 0;
}

E-OLYMP 7401. Stepan friends Read the value of n and print n – 1.

Example. Input consists of some lines. The number of the test cases n is in the first line. Each of the next n lines contains two numbers a and b. For each test line find and print the sum of a and b in a separate line.
	Sample input
	Sample output

	3
	6

	4 2
	3

	1 2
	15

	7 8
	

Solution. Read the number of test cases in the variable n. Then in the for loop for each input line we read a and b, find and print their sum in a separate line.

#include <stdio.h>

int i, a, b, n;

int main(void)

{

 scanf("%d",&n);

 for(i = 0; i < n; i++)

 {

 scanf("%d %d",&a,&b);

 printf("%d\n",a + b);

 }

 return 0;
}

The loop can be formed using the while operator. In this case we do not need to use an additional variable i:

#include <stdio.h>

int a, b, n;

int main(void)

{

 scanf("%d",&n);

 while(n--)

 {

 scanf("%d %d",&a,&b);

 printf("%d\n",a + b);

 }

 return 0;
}

The while loop continues executing as long as the expression n-- stays true. And it stays true until n is not zero.

Example. The input is a sequence of two numbers a and b written in a separate line. For each pair of numbers print their sum in a separate line.
	Sample input
	Sample output

	4 2
	6

	1 2
	3

	7 8
	15

Solution. This problem statement differs from the previous because here we do not know the number of test cases. So we must read input data until the end of file. Writing program in C, we do not need to use the file operations.

The function scanf not only reads the data, but also returns the number of arguments that has been read. So if to run the expression
i = scanf("%d %d",&a,&b);

and to enter two numbers, the variable i will be assigned the value 2. This property of scanf function is convenient to use while reading data till the end of file. If the program read all the data and reached the end of file, in the next call scanf returns -1.

#include <stdio.h>

int a, b;

int main(void)

{

 while(scanf("%d %d",&a,&b) == 2)

 printf("%d\n",a + b);

 return 0;
}

In the while loop we read two numbers a and b. While we do not reach the end of file, scanf returns 2 and the body of the loop is executed (the sum of the numbers is printed). When the end of file is reached, the scanf can’t read more data and returns -1. The loop stops.

Remember! If you read data from the console, it is possible to enter the symbol “end of file” pressing the keys ^Z.

Example. The input consists of multiple lines. Each line contains two nonnegative integers a and b. For each input line print the sum of its numbers. The last line contains two zeroes and must not be processed.
	Sample input
	Sample output

	4 2
	6

	1 2
	3

	7 8
	15

	0 0
	

Solution. This example differs from the previous because here we must process the data not till the end of file, but till the values a = 0, b = 0.

#include <stdio.h>

int a, b;

int main(void)

{

 while(scanf("%d %d", &a, &b), a + b)

 printf("%d\n", a + b);
 return 0;
}

The conditional expression of the loop while consists of two parts: the function scanf and the expression a + b. The loop continues until both expressions are true. It is obvious that scanf always returns 2 (because in this example we do not reach the end of file), and the value a + b stays true until both variables a and b are not zero (by the condition of the problem a and b are nonnegative integers).

Remember! The arithmetic expression is true if it is not equal to 0.

Consider the cases when the input consist of strings, not numbers.

Example. Each line is a test case and contains some integers. For each line print the sum of all its numbers in a separate line.
	Sample input
	Sample output

	1 2 3
	6

	101 202 3
	306

	1 10 100 1000 10000
	11111

Here we do not know not only the number of test cases, but also how many numbers are located in each of the line. Lets write two loops: the external loop will check the end of file, while the internal loop will read the numbers till the end of the line, until the symbol Line Feed ('\n') will not be read.
Let at the end of the last line of input file there is no symbol '\n', the file finishes after the last number. In this case in the internal loop after reading the variable c, it is necessary to check whether we have reached the end of file. If we should not do this, the program will try to read the symbol ‘\n’ and will be looped forever.

#include <stdio.h>

int a, s, t;

char c;

int main(void)

{

 while(scanf("%d",&s) == 1)

 {

 while((scanf("%c",&c) == 1) && (c != '\n'))

 {

 scanf("%d",&a);

 s += a;

 }

 printf("%d\n",s);

 }

 return 0;
}

Example. Each line contains two words which are the sequences of letters of latin alphabet. For each pair of words print in a separate line their concatenation.

	Sample input
	Sample output

	abc klm
	abcklm

	qw t
	qwt

	hose home
	hosehome

Solution. We shall read data like in example 3, using in function scanf the format %s. After the second word we must read the symbol Line Feed ('\n'). Otherwise, for example, the second call of scanf will read data not from the beginning of the second line, but from the symbol '\n' that is located after the second word (at the end of the first line).

#include <stdio.h>

char s1[100], s2[100];

int main(void)

{

 while(scanf("%s %s\n",s1,s2) == 2)

 printf("%s%s\n",s1,s2);

 return 0;
}

