Segment Tree
Segment Tree - a data structure that allows efficiently (for the asymptotic behavior of O (log2n)) implement the operation of the following form:

· finding the sum / minimum of an array elements in a predetermined interval a [l ... r], where l and r are inputs to the algorithm

· changes in the array elements: how to change the value of one item, and change elements on a whole array of subsegments (allowed to assign all the elements of a [l ... r] any value or add to all the elements of the array any number).

Segment tree for sums. Suppose we have an array a[0…n – 1]. You must create a tree segments, which will perform the following two operations:

• for the givven l and r calculate the sum of a[l] + a[l + 1] + … + a[r – 1] + a[r];
• assigning a[i] = x
Both operations must be carried out in a time O(log2n).

We calculate and remember somewhere sum of all elements of the array, that is, the interval a[0…n – 1]. Next, find the sum of two halves of the array: a[0…n / 2] and a[n / 2 + 1…n – 1]. Each of the two halves, in turn, will divide in half, calculate and store the sum on them, then we will divide in half again, and so on until it reaches the current segment of length 1 (one). Since [0 ... n - 1], each time we share the current cut in half (until its length is greater than one), then causing the same procedure from the two halves. For each such segment we will keep the sum of numbers on it.

You can say that these segments in which we considered the sum, form a tree: the root of the tree - segment, and each vertex has exactly two child verteces (except vertex-leaves, in which the segment has a length of 1). Hence the name - "segment tree."

Example. Tree sections of the four elements will be in the following form:

[image: image1.emf]{a

1

,a

2

,a

3

,a

4

}

{a

1

,a

2

} {a

3

,a

4

}

{a

1

} {a

2

} {a

3

} {a

4

}

The number of vertices in the segments of the tree is no more than 2n. Indeed, at the lowest level there are n leaves of tree. On the penultimate level, there are n / 2 vertices. A bit higher n / 4 vertices, and so on up to the root, which is just one vertex. Total there are only n + n / 2 + n / 4 + 2 + ... + 1 <2n vertices.

Consider the implementation of segment tree explicitly. The top of the segment tree will describe the following structure:

struct SegmentTree

{

 int summa, min, max, LeftPos, RightPos;

 struct SegmentTree *Left, *Right;

};

It contains information about the segment of a[LeftPos ... RightPos]. Values of summa, min and max, respectively, contain the amount, minimum and maximum of the interval.

Consider creating segment tree from the set of numbers a[L]...a[R].
SegmentTree *build(vector<int> &a, int L, int R)

{

 if (L == R)

 {

 // Building a tree from one vertex

 SegmentTree *New = new SegmentTree ;

 New->summa = New->min = New->max = a[L]; New->Left = New->Right = NULL;

 New->LeftPos = New->RightPos = L;

 return New;

 }

 int m = (L + R) / 2;

 // construct left and right subtree

 SegmentTree *Left = build(a,L,m);

 SegmentTree *Right = build(a,m+1,R);

// create a result tree Tree with the left subtree of the Left and right //subtree of the Right

SegmentTree *Tree = new SegmentTree;

 Tree->Left = Left; Tree->Right = Right;

// recalculate functions root of the tree through the roots of subtrees Tree->summa = Left->summa + Right->summa;

 Tree->min = min(Left->min,Right->min);

 Tree->max = max(Left->max,Right->max);

 Tree->LeftPos = Left->LeftPos;

 Tree->RightPos = Right->RightPos;

 return Tree;

}

Вычисление суммы элементов a[L]...a[R].

int sum(SegmentTree *tree,int L, int R)

{

 if (L < tree->LeftPos) L = tree->LeftPos;

 if (R > tree->RightPos) R = tree->RightPos;

 if (L > R) return 0;

 // if the root of the tree corresponds to the segment [L..R],

 // we return value of the amount stored in the root
 if ((tree->LeftPos == L) && (tree->RightPos == R)) return tree->summa;

 int LeftSum = sum(tree->Left,L,R);

 int RightSum = sum(tree->Right,L,R);

 return LeftSum + RightSum;

}

The calculation of the minimum of elements a[L] ... a[R]

int min(SegmentTree *tree,int L, int R)

{

 if (L < tree->LeftPos) L = tree->LeftPos;

 if (R > tree->RightPos) R = tree->RightPos;

 if (L > R) return INT_MAX;

 if ((tree->LeftPos == L) && (tree->RightPos == R)) return tree->min;

 int LeftMin = min(tree->Left,L,R);

 int RightMin = min(tree->Right,L,R);

 return min(LeftMin, RightMin);

}

The calculation of the maximum of elements a[L] ... a[R]

int max(SegmentTree *tree,int L, int R)

{

 if (L < tree->LeftPos) L = tree->LeftPos;

 if (R > tree->RightPos) R = tree->RightPos;

 if (L > R) return -INT_MAX;

 if ((tree->LeftPos == L) && (tree->RightPos == R)) return tree->max;

 int LeftMax = max(tree->Left,L,R);

 int RightMax = max(tree->Right,L,R);

 return max(LeftMax, RightMax);

}

Change of a[pos] = value.

void update(SegmentTree *&tree, int value, int pos)

{

 // if the tree is a leaf, then change information in it

 if (tree->LeftPos == tree->RightPos)

 {

 tree->summa = tree->min = tree->max = value;

 return;

 }

 // find out whether a[pos] in the left or right subtree
 // by changing data of subtree through the element a[pos]

 if (pos <= tree->Left->RightPos) update(tree->Left, value, pos);

 else update(tree->Right, value, pos);

 // calculate the amount of minimum and maximum for the current vertex

 tree->summa = tree->Left->summa + tree->Right->summa;

 tree->min = min(tree->Left->min, tree->Right->min);

 tree->max = max(tree->Left->max, tree->Right->max);

}

Example. Let the array a contains elements {5, 2, 8, 4}. We construct the segment tree for it.

[image: image2.emf]LeftPos = 1

RightPos = 4

min = 2

max = 8

summa = 19

LeftPos = 1

RightPos = 2

min = 2

max = 5

summa = 7

LeftPos = 3

RightPos = 4

min = 4

max = 8

summa = 12

LeftPos = 2

RightPos = 2

min = 2

max = 2

summa = 2

LeftPos = 1

RightPos = 1

min = 5

max = 5

summa = 5

LeftPos = 4

RightPos = 4

min = 4

max = 4

summa = 4

LeftPos = 3

RightPos = 3

min = 8

max = 8

summa = 8

Consider the dynamic problem solution for RMQ minima using segment tree. Segment tree will not be stored explicitly, and with linear array a of length 2n (acting cells are from a[1] to a[2n - 1]). Storage of a tree is similar to binary heap. The root of the tree will be located in the cell a[1], and children of the i-th vertex, respectively, in cells with numbers 2i and 2i + 1. Parent of the i-th vertex is in a cell with a number
[image: image3.wmf]ë

û

2

/

i

. In order to solve the problem it should perform a minimum ratio of:

a[i] = min(a[2i], a[2i + 1])
Leaves of the tree in such a numbering will be in the cells with numbers from n to 2n - 1.
Example. Let array a contain the elements {5, 2, 8, 4}. Increase the size of the array to 2 * 4 = 8 and transfer all of its elements in place of leaves – from the fourth till seventh cells. Zero cell of an array is not used. Coherently recalculate the formulas for cells from the first to the third one:
a[3] = min(a[6], a[7]), a[2] = min(a[4], a[5]), a[1] = min(a[2], a[3])

[image: image4.emf]5 2 8 4 2 2 4

Proper segment tree has the following view:

[image: image5.emf]2

2 4

5 2 8 4

The following function builds segment tree from an array a. For effective implementation the array size will increase to the power of two.

#define INF 2000000000

void BuildTree(vector<int> &a)

{

 // increase n to the power of two
 int i, n = (1 << (int)(log(1.0*(a.size() - 1))/log(2.0)) + 1);

 a.resize(2*n, INF);

 for(i = n ; i < 2 * n; i++)

 a[i] = a[i - n];

 for (i = n - 1; i > 0; i--)

 a[i] = min(a[2 * i], a[2 * i + 1]);

}
Request for a minimum

Consider the problem of calculating the minimum on the interval a[l ... r]. The segment is called fundamental, if there is a vertex in the tree, which corresponds to it. We devide the interval [l ... r] in the least amount of fundamentals. At each level their number does not exceed two.

Let l and r - two pointers, with which we will find the next fundamental segments. Initially set the l and r indicating leaves corresponding to the ends of the requested interval. If l points to the top, which is the right child of its parents, then it belongs to the top of the partition of fundamental segment, otherwise it does not belong. If r points to the top, which is the left child of it parent, then add it to the partition. Then move the pointer to the level of both the above and repeat the operation. Continuing operations described so far l ≤ r.

int rmq_min(vector<int>&v, int l, int r)

{

 int ans = INF;

 int n = v.size() / 2;

 l += n - 1, r += n - 1;

 while (l <= r)

 {

 // if l – right child of its parent,

 // consider its fundamental segment
 if (l & 1) ans = min(ans, v[l]);

 // if r – left child of its parent,

 // consider its fundamental segment
 if (!(r & 1)) ans = min(ans, v[r]);

 // move the pointer to the next level
 l = (l + 1) / 2, r = (r - 1) / 2;

 }

 return ans;

}

Example. Construct a segment tree for a set of elements {8, 3, 7, 5, 9, 4}. Since the array contains six elements, add to it two more, equal to a large number of INF.
[image: image6.emf]3

3 4

5 3 INF 4

9 4 INF INF 8 3 7 5

min(a[2],…,a[5])

Suppose you need to calculate the minimum interval [2 ... 5]. Fundamental segments included in this range are shaded. They are [2 ... 2], [3 ... 4] and [5 ... 5].

The corresponding linear array v for storage segments of the tree is of the form:

[image: image7.emf]3 5 4 INF 3 3 4 8 3 7 5 9 4 INF INF

We first establish the pointers to the leaves [l ... r] = [9 ... 12], corresponding to the element a[2], …, a[5]. Since l = 9 is odd, then it points to right child of its parent, so you should take into account the fundamental interval [a[2]... a[2]], a minimum of which is stored in v [9] = 3. r = 12 is even points to the left child of its parent, so you should take into account the fundamental interval [a[5]... a[5]], a minimum of which is stored in v [12] = 9. Rise to a upper level. Segments [l ... r] becomes [5 ... 5]. l = 5 is odd, indicates the right child of its parent, take into account fundamental interval [a[3]...a[4]] corresponding to it, which minimum is equal to v[5] = 5. Thus the minimum in the interval [a[2]...a[5]] is equal to min(3, 5, 9) = 3.

Modification

When changing the element we need pass from its leaf to the root, and update the value of all the vertices on the path from the formula v[i] = min(v[2i], v[2i + 1]). Vertex – leaf corresponding to the element a[i], is in a cell v[i + n / 2 – 1], where n – size of the array v.

void update(vector<int>&v, int i, int x)

{

 int n = v.size() / 2;

 i += n - 1;

 v[i] = x; // assign a value to the leaf
 // moving from the leaf to the root. Parent vertex of i is a vertex [i / 2]

 while (i /= 2)

 v[i] = min(v[2 * i], v[2 * i + 1]);

}
Example. Construct a segment tree for a set of elements {8, 3, 7, 5, 9, 4}. Change the third element of 1.

int m[] = {8, 3, 7, 5, 9, 4};

vector<int> a(m,m+6);

BuildTree(a);

update(a,3,1);

[image: image8.emf]1

1 4

1 3 INF 4

9 4 INF INF 8 3 1 5

Меняем третий элемент на 1

The corresponding linear array v for the storage of segment tree is of the form:
[image: image9.emf]3 1 4 INF 1 1 4 8 3 1 5 9 4 INF INF

A recursive implementation of segment trees

Segment trees, as described above, will be stored in a linear array. The root of the tree is in cell 1, its children in positions 2 and 3. In general, if the node is stored in the cell i, then its left child is in the cell 2i, and the right in 2i + 1.

The size of the array t, in which segment tree is stored, while recursive implementation should be set equal to not 2n, but to 4n. If n is not a power of two, then there are number of cells, which do not correspond to any top of the tree (the numbering behaves as if n rounded up to the nearest power of two).

To the input of method build that bulds a segment tree passed an array a, the current number of vertices v and tree border LeftPos segment and RightPos, corresponding to the top of the v.
void build(int *a, int v, int tl, int tr)

{

 if (tl == tr) t[v] = a[tl];

 else

 {

 int tm = (tl + tr) / 2;

 build (a, v*2, tl, tm);

 build (a, v*2+1, tm+1, tr);

 t[v] = t[v*2] + t[v*2+1];

 }

}

Example. Build segment tree for a set of five elements. Cells 10 and 11 are not used.
[image: image10.emf](0;1) (2;2) (3;4) (5;5) (0;5) (0;2) (3;5) (0;0) (1;1) (3;3) (4;4)

1 2 3 4 5 6 7 8 9 10 11 12 13

[image: image11.emf](0; 5)

(0; 2) (3; 5)

(0; 1) (2; 2) (3; 4) (5; 5)

(0; 0) (1; 1) (3; 3) (4; 4)

sum function finds the sum of the numbers on the interval [Left; Right]. Parameters v, LeftPos RightPos and transmitted, respectively the values 1, 0 and n - 1.

int sum(int v, int LeftPos, int RightPos, int Left, int Right)

{

 if (Left > Right) return 0;

 if ((Left == LeftPos) && (Right == RightPos)) return t[v];

 int Middle = (LeftPos + RightPos) / 2;

 return sum (v*2, LeftPos, Middle, Left, min(Right,Middle)) +
 sum (v*2+1, Middle+1, RightPos, max(Left,Middle+1), Right);

}
Segment tree for a set of elements {8, 3, 7, 5, 9, 4}, which supports the amount of operation is as:

[image: image12.emf]11 7 14 4 36 18 18 8 3 5 9

1 2 3 4 5 6 7 8 9 10 11 12 13

Modification element. The element at index Position is set to NewValue. Parameters v, LeftPos RightPos and transmitted, respectively the values 1, 0 and n - 1.
void update(int v, int LeftPos, int RightPos, int Position, int NewValue)

{

 if (LeftPos == RightPos) t[v] = NewValue;

 else

 {

 int Middle = (LeftPos + RightPos) / 2;

 if (Position <= Middle) update (v*2, LeftPos, Middle, Position, NewValue);

 else update (v*2+1, Middle+1, RightPos, Position, NewValue);

 t[v] = t[v*2] + t[v*2+1];

 }

}

Group modification. The addition of the segment.

Suppose you need to add some value to all elements of a certain interval (group modification). Let thus suppose that we should support only the function of minimum in the interval.

While modifying data on the whole segment we will keep some additional information in each node of the segment tree - whether the requested operation on this segment entirely committed or not. We introduce the notion of delayed update of segment tree. In each request for modification, instead of changing the value of the entire set of vertices of the segment tree, we change only some of them (in the fundamental set of segments), by fixing flags "to perform the operation later" for the children segments, which means that over all its subsegments later need to perform the corresponding operation. That means there are remain some unimplemented modifications in the tree.

Each node of the tree will be supported by the values ​​of two variables: the amount of the segment summa and some additional value add, which must be added to all elements of the segment. Push the value add to the next level of a tree means to add it to the value of summa of the left and the right subtree, multiplied by the corresponding length of the segment, as well as add to the value add of the value of the left and right subtrees, thus providing a push recursively the value add to the leaves of the tree.

[image: image13.emf][a; b]

Add = a

Summa = s

[a; m]

Add = a

1

Summa = s

1

[m+1; b]

Add = a

2

Summa = s

2

Проталкивание

[a; b]

Add = 0

Summa = s

[a; m]

Add = a

1

+ a

Summa =

s

1

+ a * (m –a + 1)

[m+1; b]

Add = a

2

+ a

Summa =

s

2

+ a * (b –m)

Push operation should be performed not only when performing the addition operation in the segment, but also during calculation of amount.

Example. Let a vertex corresponds to the interval [0; 5]. Its children are the intervals [0; 2] and [3; 5]. Consider the following example of push operation.

[image: image14.emf][0; 5]

Add = 3

Summa = 5

[0; 2]

Add = 4

Summa = 1

[3; 5]

Add = 1

Summa = 4

PUSH

[0; 5]

Add = 0

Summa = 5

[0; 2]

Add = 7

Summa = 10

[3; 5]

Add = 4

Summa = 13

Summa =

1 + 3 * (2 –0 + 1) = 10

Summa =

4 + 3 * (5 –3 + 1) = 13

For example, consider a modification of the "add to all the elements of the array amount of value". Perform single change in the segment tree - increase the value of add in the root of the tree by amount of value, counting supported functions in the root (sum, minimum, or something else). The rest tops of the tree remains the same, although in fact the value of supported functions in all the tops of the tree had to be modified.

Realize the function of modification of segment. It adds value of value to all cells from v [L], ..., .v [R].

void AddValue(SegmentTree *&tree, int L, int R, int value)

{

Cut the interval [L; R] so that it entered into the segment [tree->LeftPos; tree->RightPos], to which corresponds top of the tree tree. If the resulting segment will be empty (L <R), then exit from the procedure.

 if (L < tree->LeftPos) L = tree->LeftPos;

 if (R > tree->RightPos) R = tree->RightPos;

 if (L > R) return;

Perform push, if add is not equal to 0.

 if (tree->add)

 {

 if (tree->Left != NULL)

 tree->Left->add += tree->add,

 tree->Left->min += tree->add;

 if (tree->Right != NULL)

 tree->Right->add += tree->add,

 tree->Right->min += tree->add;

 tree->add = 0;

 }

If root of the tree tree corresponds to segment [L..R], change its data
 if ((tree->LeftPos == L) && (tree->RightPos == R))

 {

 tree->add += value;

 tree->min += value;

 return;

 }

Recursively modify left and right subtree.

 AddValue(tree->Left,L,R,value);

 AddValue(tree->Right,L,R,value);

 tree->min = min(tree->Left->min,tree->Right->min);

}

Example. We construct the tree segment tree for the sequence {1, 2, 1, 2, 3, 2, 1, 0}. The values of variables min are indicated in the vertreces. Initially, the amount of add in all the vertices are 0.

[image: image15.emf]0

1 0

1 1 0 2

3 2 1 0 1 2 1 2

Let us add 2 to all the elements in the interval [2 ... 7]. After modifying segment tree takes the following form. In the changed vertrices there is written value of min / add.

[image: image16.emf]1

1 2/2

3/2 1 0 2

3 2 1 0 1 2 1 2

If, for example, we hold the push immediately, we would get segment tree corresponding to the sequence {1, 2, 3, 4, 5, 4, 3, 2}.

[image: image17.emf]1

1 2

3 1 2 4

5 4 3 2 1 2 3 4

Group modification. Summation. Implementation on arrays.

Segment trees are stored as an array t of structures node of the length MAX, where MAX - the maximum number of items that can be stored in the segment.

#define MAX 100000
struct node

{

 long long summa, add;

} t[4*MAX];

If value of add in vertex v is nonzero, it is necessary to push it one level down. After pushing add put zero in vertex v.

void Push(int v, int LeftPos, int Middle, int RightPos)

{

 if (t[v].add)

 {

 t[2*v].add += t[v].add;

 t[2*v].summa += (Middle - LeftPos + 1) * t[v].add;

 t[2*v+1].add += t[v].add;

 t[2*v+1].summa += (RightPos - Middle) * t[v].add;

 t[v].add = 0;

 }

}

To the vertex v corresponds segment [LeftPos; RightPos]. Function AddValue adds to all elements of the segment [L; R] the value of Value.

void AddValue(int v, int LeftPos, int RightPos, int L, int R, int Value)

{

 if (L > R) return;

If [L; R] corresponds to segment, which stored in the vertex of the tree [LeftPos; RightPos], in the following vertex of a tree add corresponding values to the variables add and summa.
 if ((LeftPos == L) && (RightPos == R))

 {

 t[v].add += Value;

 t[v].summa += (R - L + 1) * Value;

 return;

 }

 int Middle = (LeftPos + RightPos) / 2;

Perform push, if add is not equal to 0.

 Push(v,LeftPos,Middle,RightPos);

Recursively process the left and right children of the current vertex of the segment tree.
 AddValue(2*v, LeftPos, Middle, L, min(Middle,R), Value);

 AddValue(2*v+1, Middle+1, RightPos, max(L,Middle+1), R, Value);

Recalculates the value of the sum of the vertex v in terms of values of sums of its children.
 t[v].summa = t[2*v].summa + t[2*v+1].summa;

}

To the vertex v corresponds segment [LeftPos; RightPos]. Function Summa returns the value of thes sum on the interval [L; R].

long long Summa(int v, int LeftPos, int RightPos, int L, int R)

{

 if (L > R) return 0;

If [L; R] coincides with the segment [LeftPos; RightPos], which is stored in the vertex v of the tree, then return the value of sum contained in it.
 if ((LeftPos == L) && (RightPos == R)) return t[v].summa;

 int Middle = (LeftPos + RightPos) / 2;

Perform push, if add is not equal to 0.

 Push(v,LeftPos,Middle,RightPos);

We divide the interval [L; R] to [L; Middle] and [Middle + 1; R]. Run the recursive calculation of the sums in the subsegments. Add up the received sums.
 return Summa(2*v, LeftPos, Middle, L, min(Middle,R)) +

 Summa(2*v+1, Middle+1, RightPos, max(L,Middle+1), R);

}

Group modification. Assigning on the interval.

Consider a group assignment on the segment with simultaneous support of the operation of sum on the segment.

In each node of the tree in variable add we will store value that is assigned to all the elements of the segment corresponding to this node. If the vertex of the tree corresponds to the interval [l; r], the sum of the numbers on the interval equals to add * (r – l + 1). In further opeartons of assigning and sumation while moving from the root of the tree to the buttom the value of add in each vertex should be pushed one level down along the tree.

When you create a tree initialize add at each vertex will be a value that will never be assigned to the elements of the segment (eg -1).

SetValue function assigns a value to all elements on the interval [L; R].

void SetValue(SegmentTree *&tree, int L, int R, long long value)

{

 if (L < tree->LeftPos) L = tree->LeftPos;

 if (R > tree->RightPos) R = tree->RightPos;

 if (L > R) return;

If [L; R] coincides with the segment [LeftPos; RightPos], which is stored in the vertex of the tree, then assign corresponding values to the variables add and summa in the current vertex of a tree.

 if ((tree->LeftPos == L) && (tree->RightPos == R))

 {

 tree->add = value;

 tree->summa = value * (R - L + 1);

 return;

 }

If the value tree-> add is set (not equal to -1), it is necessary to push it to a lower level. Thus it is necessary to recalculate the value of the sum in the child node tree->Left->summa and tree->Right->summa.
 if (tree->add != -1)

 {

 if (tree->Left != NULL)

 tree->Left->add = tree->add,

 tree->Left->summa = tree->add *
 (tree->Left->RightPos - tree->Left->LeftPos + 1);

 if (tree->Right != NULL)

 tree->Right->add = tree->add,

 tree->Right->summa = tree->add *
 (tree->Right->RightPos - tree->Right->LeftPos + 1);

 tree->add = -1;

 }

Recursively modify the left and right subtree. Recalculates the value of the sum in the current vertex of the tree.
 SetValue(tree->Left,L,R,value);

 SetValue(tree->Right,L,R,value);

 tree->summa = tree->Left->summa + tree->Right->summa;

}
Function Summa returns the value of sum on the interval [L; R].

long long Summa(SegmentTree *&tree, int L, int R)

{

 if (L < tree->LeftPos) L = tree->LeftPos;

 if (R > tree->RightPos) R = tree->RightPos;

 if (L > R) return 0;

If [L; R] corresponding to the segment on the vertex of the tree, it will return a value of sum stored in it.

 if ((tree->LeftPos == L) && (tree->RightPos == R))

 return tree->summa;

We produce push of the value add to a level below by recalculation of the amount for the children nodes.

 if (tree->add != -1)

 {

 if (tree->Left != NULL)

 tree->Left->add = tree->add,

 tree->Left->summa = tree->add *

 (tree->Left->RightPos - tree->Left->LeftPos + 1);

 if (tree->Right != NULL)

 tree->Right->add = tree->add,

 tree->Right->summa = tree->add *

 (tree->Right->RightPos - tree->Right->LeftPos + 1);

 tree->add = -1;

 }

Return the required sum, extracting information from the left and right subtrees.

 return Summa(tree->Left,L,R) + Summa(tree->Right,L,R);

}

Example. Create a segment tree of the four elements, we initialize them with zeros. In each node will display the values summa / add. Consider how the data will change during the modification requests in verteces of a tree.

Green color will denote the verteces which correspond to the fundamental segments, blue - the verteces, that lie on the path from the root to the green verteces and red - verteces, that made by pushing and which are below of the green verteces.

[image: image18.emf]4/-1

4/2 0/-1

0/-1 0/-1 0/-1 0/-1

SetValue(0,1,2)

[image: image19.emf]14/-1

6/-1 8/4

4/4 2/2 0/-1 0/-1

SetValue(1,3,4)

[image: image20.emf]14/-1

6/-1 8/-1

4/4 2/2 4/4 4/4

Summa(2,2)

BIT problems in SPOJ :

6256. INVCNT

6294. YODANESS (same as INVCNT but string)

8002. HORRIBLE (BIT or segment tree)

2815. INCSEQ (DP + BIT)

1329. KPMATRIX (DP + BIT)

1029. MATSUM (BIT 2D)
e-olimp:

http://www.e-olimp.com/problems/3318
http://www.e-olimp.com/problems/3329
 http://felix-halim.net/story/icpc10/index.php#E
 http://www.suhendry.net/blog/?p=1389&page=6
_1526388768.vsd
1

1

4

1

3

INF

4

9

4

INF

INF

8

3

1

5

Меняем третий элемент на 1

_1526388772.vsd
5

2

8

4

2

2

4

_1526388774.vsd
LeftPos = 1

RightPos = 4

min = 2

max = 8

summa = 19

LeftPos = 1

RightPos = 2

min = 2

max = 5

summa = 7

LeftPos = 3

RightPos = 4

min = 4

max = 8

summa = 12

LeftPos = 2

RightPos = 2

min = 2

max = 2

summa = 2

LeftPos = 1

RightPos = 1

min = 5

max = 5

summa = 5

LeftPos = 4

RightPos = 4

min = 4

max = 4

summa = 4

LeftPos = 3

RightPos = 3

min = 8

max = 8

summa = 8

_1526388775.vsd
{a1,a2,a3,a4}

{a1,a2}

{a3,a4}

{a1}

{a2}

{a3}

{a4}

_1526388773.unknown

_1526388770.vsd
3

3

4

5

3

INF

4

9

4

INF

INF

8

3

7

5

min(a[2],…,a[5])

_1526388771.vsd
2

2

4

5

2

8

4

_1526388769.vsd
3

5

4

INF

3

3

4

8

3

7

5

9

4

INF

INF

_1526388764.vsd
11

7

14

4

36

18

18

8

3

5

9

1

2

3

4

5

6

7

8

9

10

11

12

13

_1526388766.vsd
(0;1)

(2;2)

(3;4)

(5;5)

(0;5)

(0;2)

(3;5)

(0;0)

(1;1)

(3;3)

(4;4)

1

2

3

4

5

6

7

8

9

10

11

12

13

_1526388767.vsd
3

1

4

INF

1

1

4

8

3

1

5

9

4

INF

INF

_1526388765.vsd
(0; 5)

(0; 2)

(0; 0)

(3; 5)

(0; 1)

(1; 1)

(2; 2)

(3; 4)

(5; 5)

(3; 3)

(4; 4)

_1526388760.vsd
1

1

2/2

3/2

1

0

2

3

2

1

0

1

2

1

2

_1526388762.vsd
[0; 5]
Add = 3
Summa = 5

[0; 2]
Add = 4
Summa = 1

[3; 5]
Add = 1
Summa = 4

[0; 5]
Add = 0
Summa = 5

[0; 2]
Add = 7
Summa = 10

[3; 5]
Add = 4
Summa = 13

PUSH

Summa =
1 + 3 * (2 – 0 + 1) = 10

Summa =
4 + 3 * (5 – 3 + 1) = 13

_1526388763.vsd
[a; b]
Add = a
Summa = s

[a; m]
Add = a1
Summa = s1

[m+1; b]
Add = a2
Summa = s2

[a; b]
Add = 0
Summa = s

[a; m]
Add = a1 + a
Summa =
s1 + a * (m – a + 1)

[m+1; b]
Add = a2 + a
Summa =
s2 + a * (b – m)

Проталкивание

_1526388761.vsd
0

1

0

1

1

0

2

3

2

1

0

1

2

1

2

_1526388758.vsd
4/-1

4/2

0/-1

0/-1

0/-1

0/-1

0/-1

SetValue(0,1,2)

_1526388759.vsd
1

1

2

3

1

2

4

5

4

3

2

1

2

3

4

_1526388757.vsd
14/-1

6/-1

8/4

4/4

2/2

0/-1

0/-1

SetValue(1,3,4)

_1526388756.vsd
14/-1

6/-1

8/-1

4/4

2/2

4/4

4/4

Summa(2,2)

