
Matrix chain multiplication problem

Let A be an m × n matrix and B be an n × p matrix:

The matrix product C = AB is defined to be the m × p matrix

such that

for i = 1, ..., m and j = 1, ..., p.

That is, the entry cij of the product is obtained by multiplying term-by-term the

entries of the i-th row of A and the j-th column of B, and summing these n products. In

other words, cij is the dot product of the i-th row of A and the j-th column of B.

Therefore, AB can also be written as

Thus the product AB is defined if and only if two matrices A and B are

compatible: the number of columns in A equals the number of rows in B, in this case n.

A
m x n

B
n x p

* = C
m x p

number of operations = m * n * p

To multiply matrix A of size m × n by the matrix B of size n × p we get a matrix C

of size m × p. Number of operations for matrix multiplication is proportional to

m * n * p

A
4 x 2

B
2 x 3

* = C
4 x 3

number of operations = 4 * 2 * 3 = 24

E-OLYMP 1482. Matrix multiplication Find the product of two matrices.

► Multiply matrices using the formula:





n

k

jkkiji bac
1

,,, , where i = 1, 2, …, m; j = 1, 2, …, q.

Store the matrices A, B, C in two dimentional arrays a, b, c. Let A has the size na

× ma, B has the size nb × mb. Matrices are compatible for multiplication if ma = nb.

Resulting matrix C has the size na × mb.

for (i = 0; i < na; i++)

for (j = 0; j < mb; j++)

for (k = 0; k < ma; k++)

 c[i][j] += a[i][k] * b[k][j];

Matrix chain multiplication problem

We are given a sequence (chain) <A1, A2, . . . , An> of n matrices to be multiplied,

and we wish to compute the product A1 * A2 * . . . * An.

We can evaluate the expression using the standard algorithm for multiplying pairs

of matrices as a subroutine once we have parenthesized it to resolve all ambiguities in

how the matrices are multiplied together. A product of matrices is fully parenthesized if

it is either

 a single matrix;

 the product of two fully parenthesized matrix products, surrounded by

parentheses;

Matrix multiplication is associative, and so all parenthesizations yield the same

product. For example, if the chain of matrices is <A1, A2, A3, A4>, the product

A1A2A3A4 can be fully parenthesized in five distinct ways:

(A1 (A2 (A3 A4))) ,

(A1 ((A2 A3) A4)) ,

((A1 A2) (A3 A4)) ,

((A1 (A2 A3)) A4) ,

(((A1 A2) A3) A4) .

https://www.e-olymp.com/en/problems/1482

The way we parenthesize a chain of matrices can have a dramatic impact on the

cost of evaluating the product. To illustrate the different costs incurred by different

parenthesizations of a matrix product, consider the problem of a chain <A1, A2, A3> of

three matrices. Suppose that the dimensions of the matrices are

A1

10 x 100

A2

100 x 5

A3

5 x 50

If we multiply according to the parenthesization ((A1 A2) A3), we perform 7500

scalar multiplications.

If we multiply according to the parenthesization (A1 (A2 A3)), we perform 75000

scalar multiplications.

A1

10 x 100

A2

100 x 5

A3

5 x 50

A1A2

10 x 5

A1A2A3

10 x 50

10 x 100 x 5 = 5 000

operations

10 x 5 x 50 = 2 500

operations

total: 7 500 operations

((A1 A2) A3)

A3

5 x 50

A2

100 x 5

A1

10 x 100

A2A3

100 x 50

A1A2A3

10 x 50

100 x 5 x 50 = 25 000

operations

10 x 100 x 50 = 50 000

operations

total: 75 000 operations

(A1 (A2 A3))

Thus, computing the product according to the first parenthesization is 10 times

faster.

The matrix-chain multiplication problem can be stated as follows: given a chain

<A1, A2, . . . , An> of n matrices, where for i = 1, 2, . . . , n, matrix Ai has dimension pi−1

× pi, fully parenthesize the product A1 A2 . . . An in a way that minimizes the number of

scalar multiplications.

Note that in the matrix-chain multiplication problem, we are not actually

multiplying matrices. Our goal is only to determine an order for multiplying matrices

that has the lowest cost.

Counting the number of parenthesizations

First let us convince ourselves that exhaustively checking all possible

parenthesizations does not yield an efficient algorithm. Denote the number of alternative

parenthesizations of a sequence of n matrices by P(n).

If n = 1, there is just one matrix and therefore only one way to fully parenthesize

the matrix product. P(1) = 1

If n ≥ 2, a fully parenthesized matrix product is the product of two fully

parenthesized matrix subproducts, and the split between the two subproducts may occur

between the k-th and (k + 1)-st matrices for any k = 1, 2, . . . , n − 1.

A1 A2 ... Ak Ak+1 ... An

P(n)

P(k) P(n-k)
Thus, we obtain the recurrence

P(n) =

















1

1

2),()(

1 ,1

n

k

nknPkP

n

For example,

P(1) = 1

P(2) = P(1) * P(1) = 1;

P(3) = P(1) * P(2) + P(2) * P(1) = 1 + 1 = 2;

P(4) = P(1) * P(3) + P(2) * P(2) + P(3) * P(1) = 2 + 1 + 2 = 5;

P(5) = P(1) * P(4) + P(2) * P(3) + P(3) * P(2) + P(4) * P(1) = 5 + 2 + 2 + 5 = 14

A1 A2 A3 A4

P(4)

P(1) P(3)

(A1 ((A2 A3) A4)

(A1 (A2 (A3 A4)))

A1 A2 A3 A4

P(4)

P(2) P(2)

((A1 A2) (A3 A4))

A1 A2 A3 A4

P(4)

P(3) P(1)

(((A1 A2) A3) A4)

(A1 (A2 A3)) A4)

The solution to a similar recurrence is the sequence of Catalan numbers, which

grows as Ω(4n / n3/2). The number of solutions is thus exponential in n, and the brute-

force method of exhaustive search is therefore a poor strategy for determining the

optimal parenthesization of a matrix chain.

Catalan numbers are given by recurrence relation:

с0 = 1,

сn = c0cn-1 + c1cn-2 + c2cn-3 + ... + cn-1c0 = 






1

0

1

n

k

knk cc , if n > 0

We have: с0 = 1, с1 = 1, с2 = 2, с3 = 5, с4 = 14, … . So P(i) = ci-1.

E-OLYMP 9643. Catalan numbers Compute the n-th Catalan numbers modulo

m.

► Let’s compute first Catalan numbers:

 с0 = 1

 с1 = c0c0 = 1,

https://www.e-olymp.com/en/problems/9643

 с2 = c0c1 + c1c0 = 1 + 1 = 2,

 с3 = c0c2 + c1c1 + c2c0 = 2 + 1 + 2 = 5,

 с4 = c0c3 + c1c2 + c2c1 + c3c0 = 5 + 2 + 2 + 5 = 14,

 с5 = c0c4 + c1c3 + c2c2 + c3c1 + c4c0 = 14 + 5 + 4 + 5 + 14 = 42

Since the value of сn is recalculated through all the previous values of c0, c1, c2, ...,

cn-1, then the values of the Catalan numbers we shall store in linear array
long long cat[10001]

Calculate the Catalan numbers using the recurrent formula.

cat[0] = 1;

for (i = 1; i <= n; i++)

{

 for (j = 0; j < i; j++)

 cat[i] = cat[i] + cat[j] * cat[i - j - 1];

}

Do not forget in this problem to make calculations modulo m.

Recurrent formula

Let Aij be the product of matrices AiAi+1…Aj.

Let f(i, j) be the minimum cost of computing the value of Aij.

It's obvious that:

 f(i, i) = 0 because Aii = Ai (chain consists of just one matrix);

 f(i, i + 1) = pi−1 * pi * pi+1 because we multiply matrices of sizes pi−1 × pi and

pi × pi+1.

Ai

pi−1 × pi

* Ai+1

pi × pi+1

= Ai,i+1

pi-1 × pi+1

Let us assume that the optimal parenthesization splits the product AiAi+1…Aj between Ak and

Ak+1, where i ≤ k < j. Note that

 for k = i we have the product Ai * Ai+1…Aj;

 for k = j – 1 we have the product AiAi+1… Aj–1 * Aj;

Ai Ai+1 ... Ak Ak+1 ... Aj

f(i, j)

f(i, k) f(k+1, j)

Ai,k Ak+1,j

pk × pjpi-1 × pk

pi-1 * pk * pj operations

*

The value of f(i, j) is equal to the minimum cost for computing the subproducts Ai,k

and Ak+1,j plus the cost of multiplying these two matrices together (which is pi−1 * pk *

pj). Thus, we obtain

f(i, j) = f(i, k) + f(k + 1, j) + pi−1 * pk * pj

This recursive equation assumes that we know the value of k, which we do not.

There are only j − i possible values for k, however, namely k = i, i +1, . . . , j −1. Since

the optimal parenthesization must use one of these values for k, we need only check

them all to find the best. Thus, our recursive definition for the minimum cost of

parenthesizing the product AiAi+1…Aj becomes

 













jiifpppjkfkif

jiif
jif

jki
jki

 ,),1(),(min

 ,0
),(

1

Example

Consider the next four matrices that we want to multiply:

A1

2 x 4

A2

4 x 5

A3

5 x 3

A4

3 x 6

* * *

The size of matrix Ai is pi−1 × pi, array p contains the values (2, 4, 5, 3, 6),

indexation starts from 0, i.e. p0 = 2.

2

0

pi

i

4

1

5

2

3

3

6

4

Let the values of f(i, j) will be saved in dp[i][j]. Initially set

dp[i][j] = ∞ (i ≠ j), dp[i][i] = 0

Next compute the values dp[i][i + 1] = pi−1 * pi * pi+1:

 dp[1][2] = p0 * p1 * p2 = 2 * 4 * 5 = 40;

 dp[2][3] = p1 * p2 * p3 = 4 * 5 * 3 = 60;

 dp[3][4] = p2 * p3 * p4 = 5 * 3 * 6 = 90;

0 ∞ ∞ ∞1

0 ∞ ∞2

0 ∞3

04

1 2 3 4

0 40 ∞ ∞1

0 60 ∞2

0 903

04

1 2 3 4

dp[i][i] = 0 dp[i][i+1] = pi−1 * pi * pi+1

Continue the computations:

dp[1][3] = MIN{
dp[1][2] + dp[3][3] + p0p2p3 = 40 + 0 + 2*5*3 = 70

dp[1][1] + dp[2][3] + p0p1p3 = 0 + 60 + 2*4*3 = 84

70=

dp[2][4] = MIN{
dp[2][3] + dp[4][4] + p1p3p4 = 60 + 0 + 4*3*6 = 132

dp[2][2] + dp[3][4] + p1p2p4 = 0 + 90 + 4*5*6 = 210

132=

And here is how to find the final value dp[1][4]:

dp[1][4] = MIN{
dp[1][3] + dp[4][4] + p0p3p4 = 70 + 0 + 2*3*6 = 106

dp[1][2] + dp[3][4] + p0p2p4 = 40 + 90 + 2*5*6 = 190 106=

dp[1][1] + dp[2][4] + p0p1p4 = 0 + 132 + 2*4*6 = 180

0 40 70 1061

0 60 1322

0 903

04

1 2 3 4

E-OLYMP 9647. Optimal Matrix Multiplication Chain of matrices is given.

Print the minimum number of multiplications sufficient to multiply all matrices.

► Declare the constants INF = ∞, MAX = 11 (maximum possible number of

matrices in the product). Declare arrays dp and p.

#define INF 0x3F3F3F3F3F3F3F3FLL

#define MAX 11

long long dp[MAX][MAX], p[MAX];

Function Mult finds the minimum number of multiplications sufficient to compute

Aij = Ai * Ai+1 * … * Aj-1 * Aj, which is saved in the cell dp[i][j].

long long Mult(int i, int j)

{

 if (dp[i][j] == INF)

 for (int k = i; k < j; k++)

 {

 long long temp = Mult(i, k) + Mult(k + 1, j) +

 p[i - 1] * p[k] * p[j];

 if (temp < dp[i][j]) dp[i][j] = temp;

 }

 return dp[i][j];

https://www.e-olymp.com/en/problems/9647

}

In the main part of the program after reading the data, make a call
Mult(1,n);

to compute the result, the minimum number of multiplications to find the optimal

product of matrices A1 * A2 * … * An-1 * An.

E-OLYMP 1521. Optimal Matrix Multiplication - 2 Chain of matrices is given.

Find the way to multiply them minimizing the number of scalar multiplications.

► Use the recurrent formula given above.

https://www.e-olymp.com/en/problems/1521

