
Matrix chain multiplication problem 
 

Let A be an m × n matrix and B be an n × p matrix: 

 
The matrix product C = AB is defined to be the m × p matrix 

 

such that 

 

for i = 1, ..., m and j = 1, ..., p. 
 

That is, the entry cij of the product is obtained by multiplying term-by-term the 

entries of the i-th row of A and the j-th column of B, and summing these n products. In 

other words, cij is the dot product of the i-th row of A and the j-th column of B. 

 

Therefore, AB can also be written as 

 
 

Thus the product AB is defined if and only if two matrices A and B are 

compatible: the number of columns in A equals the number of rows in B, in this case n. 

A
m x n

B
n x p

* = C
m x p

number of operations = m * n * p
 

 

 



To multiply matrix A of size m × n by the matrix B of size n × p we get a matrix C 

of size m × p. Number of operations for matrix multiplication is proportional to 

m * n * p 

 

 

A
4 x 2

B
2 x 3

* = C
4 x 3

number of operations = 4 * 2 * 3 = 24

 
 

E-OLYMP 1482. Matrix multiplication Find the product of two matrices. 

► Multiply matrices using the formula: 





n

k

jkkiji bac
1

,,, , where i = 1, 2, …, m; j = 1, 2, …, q. 

Store the matrices A, B, C in two dimentional arrays a, b, c.  Let A has the size na 

× ma, B has the size nb × mb. Matrices are compatible for multiplication if ma = nb. 

Resulting matrix C has the size na × mb. 
 

for (i = 0; i < na; i++) 

for (j = 0; j < mb; j++) 

for (k = 0; k < ma; k++) 

  c[i][j] += a[i][k] * b[k][j]; 

 

Matrix chain multiplication problem 

We are given a sequence (chain) <A1, A2, . . . , An> of n matrices to be multiplied, 

and we wish to compute the product A1 * A2 * . . . * An. 

We can evaluate the expression using the standard algorithm for multiplying pairs 

of matrices as a subroutine once we have parenthesized it to resolve all ambiguities in 

how the matrices are multiplied together. A product of matrices is fully parenthesized if 

it is either 

 a single matrix; 

 the product of two fully parenthesized matrix products, surrounded by 

parentheses; 

Matrix multiplication is associative, and so all parenthesizations yield the same 

product. For example, if the chain of matrices is <A1, A2, A3, A4>, the product 

A1A2A3A4 can be fully parenthesized in five distinct ways: 

( A1 (A2 (A3 A4 ) ) ) , 

( A1 ( ( A2 A3) A4 ) ) , 

( ( A1 A2) (A3 A4 ) ) , 

( ( A1 (A2 A3 ) ) A4) , 

( ( ( A1 A2 ) A3 ) A4) . 

https://www.e-olymp.com/en/problems/1482


 

The way we parenthesize a chain of matrices can have a dramatic impact on the 

cost of evaluating the product. To illustrate the different costs incurred by different 

parenthesizations of a matrix product, consider the problem of a chain <A1, A2, A3> of 

three matrices. Suppose that the dimensions of the matrices are 

A1

10 x 100

A2

100 x 5

A3

5 x 50
 

If we multiply according to the parenthesization ( ( A1 A2 ) A3 ), we perform 7500 

scalar multiplications.  

If we multiply according to the parenthesization ( A1 (A2 A3 ) ), we perform 75000 

scalar multiplications.  

A1

10 x 100

A2

100 x 5

A3

5 x 50

A1A2

10 x 5

A1A2A3

10 x 50

10 x 100 x 5 = 5 000

operations

10 x 5 x 50 = 2 500

operations

total: 7 500 operations

( ( A1 A2 ) A3 )

A3

5 x 50

A2

100 x 5

A1

10 x 100

A2A3

100 x 50

A1A2A3

10 x 50

100 x 5 x 50 = 25 000

operations

10 x 100 x 50 = 50 000

operations

total: 75 000 operations

( A1 ( A2 A3 ) )  
 

Thus, computing the product according to the first parenthesization is 10 times 

faster. 

 

The matrix-chain multiplication problem can be stated as follows: given a chain 

<A1, A2, . . . , An> of n matrices, where for i = 1, 2, . . . , n, matrix Ai has dimension pi−1 

× pi, fully parenthesize the product A1 A2 . . . An in a way that minimizes the number of 

scalar multiplications. 

 

Note that in the matrix-chain multiplication problem, we are not actually 

multiplying matrices. Our goal is only to determine an order for multiplying matrices 

that has the lowest cost. 

 

Counting the number of parenthesizations 

First let us convince ourselves that exhaustively checking all possible 

parenthesizations does not yield an efficient algorithm. Denote the number of alternative 

parenthesizations of a sequence of n matrices by P(n). 



If n = 1, there is just one matrix and therefore only one way to fully parenthesize 

the matrix product. P(1) = 1 

If n ≥ 2, a fully parenthesized matrix product is the product of two fully 

parenthesized matrix subproducts, and the split between the two subproducts may occur 

between the k-th and (k + 1)-st matrices for any k = 1, 2, . . . , n − 1. 

A1 A2 ... Ak Ak+1 ... An

P(n)

P(k) P(n-k)  
Thus, we obtain the recurrence 

P(n) = 

















1

1

2 ),()(

1 ,1

n

k

nknPkP

n

 

For example, 

P(1) = 1 

P(2) = P(1) * P(1) = 1; 

P(3) = P(1) * P(2) + P(2) * P(1) = 1 + 1 = 2;  

P(4) = P(1) * P(3) + P(2) * P(2) + P(3) * P(1) = 2 + 1 + 2 = 5; 

P(5) = P(1) * P(4) + P(2) * P(3) + P(3) * P(2) + P(4) * P(1) = 5 + 2 + 2 + 5 = 14 

 

A1 A2 A3 A4

P(4)

P(1) P(3)

( A1 ( ( A2 A3 ) A4 )

( A1 ( A2 ( A3 A4 ) ) )

A1 A2 A3 A4

P(4)

P(2) P(2)

( ( A1 A2 ) ( A3 A4 ) )

A1 A2 A3 A4

P(4)

P(3) P(1)

( ( ( A1 A2 ) A3 ) A4 )

( A1 ( A2 A3) ) A4 )

 
The solution to a similar recurrence is the sequence of Catalan numbers, which 

grows as Ω(4n / n3/2). The number of solutions is thus exponential in n, and the brute-

force method of exhaustive search is therefore a poor strategy for determining the 

optimal parenthesization of a matrix chain. 

 

Catalan numbers are given by recurrence relation: 

с0 = 1, 

сn = c0cn-1 + c1cn-2 + c2cn-3 + ... + cn-1c0 = 
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We have: с0 = 1, с1 = 1, с2 = 2, с3 = 5, с4 = 14, … . So P(i) = ci-1. 

 

E-OLYMP 9643. Catalan numbers Compute the n-th Catalan numbers modulo 

m. 

► Let’s compute first Catalan numbers: 

 с0 = 1 

 с1 = c0c0  = 1, 

https://www.e-olymp.com/en/problems/9643


 с2 = c0c1 + c1c0 = 1 + 1 = 2, 

 с3 = c0c2 + c1c1 + c2c0 = 2 + 1 + 2 = 5, 

 с4 = c0c3 + c1c2 + c2c1 + c3c0 = 5 + 2 + 2 + 5 = 14, 

 с5 = c0c4 + c1c3 + c2c2 + c3c1 + c4c0 = 14 + 5 + 4 + 5 + 14 = 42 

Since the value of сn is recalculated through all the previous values of c0, c1, c2, ..., 

cn-1, then the values of the Catalan numbers we shall store in linear array 
long long cat[10001] 

Calculate the Catalan numbers using the recurrent formula. 
 

cat[0] = 1; 

for (i = 1; i <= n; i++) 

{ 

  for (j = 0; j < i; j++) 

    cat[i] = cat[i] + cat[j] * cat[i - j - 1]; 

} 

 

Do not forget in this problem to make calculations modulo m. 

 

Recurrent formula 

Let Aij be the product of matrices AiAi+1…Aj. 

Let f(i, j) be the minimum cost of computing the value of Aij. 

It's obvious that: 

 f(i, i) = 0 because Aii = Ai (chain consists of just one matrix); 

 f(i, i + 1) = pi−1 * pi * pi+1 because we multiply matrices of sizes pi−1 × pi and 

pi × pi+1. 

Ai

pi−1 × pi

* Ai+1

pi × pi+1

= Ai,i+1

pi-1 × pi+1
 

Let us assume that the optimal parenthesization splits the product AiAi+1…Aj between Ak and 

Ak+1, where i ≤ k < j. Note that 

 for k = i we have the product Ai * Ai+1…Aj; 

 for k = j – 1 we have the product AiAi+1… Aj–1 * Aj; 

Ai Ai+1 ... Ak Ak+1 ... Aj

f(i, j)

f(i, k) f(k+1, j)

Ai,k Ak+1,j

pk × pjpi-1 × pk

pi-1 * pk * pj operations

*

 
The value of f(i, j) is equal to the minimum cost for computing the subproducts Ai,k 

and Ak+1,j plus the cost of multiplying these two matrices together (which is pi−1 * pk * 

pj). Thus, we obtain 



f(i, j) = f(i, k) + f(k + 1, j) + pi−1 * pk * pj 

 

This recursive equation assumes that we know the value of k, which we do not. 

There are only j − i possible values for k, however, namely k = i, i +1, . . . , j −1. Since 

the optimal parenthesization must use one of these values for k, we need only check 

them all to find the best. Thus, our recursive definition for the minimum cost of 

parenthesizing the product AiAi+1…Aj becomes 
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Example 

Consider the next four matrices that we want to multiply: 

A1

2 x 4

A2

4 x 5

A3

5 x 3

A4

3 x 6

* * *

 
The size of matrix Ai is pi−1 × pi, array p contains the values (2, 4, 5, 3, 6), 

indexation starts from 0, i.e. p0 = 2. 

2

0

pi

i

4

1

5

2

3

3

6

4

 
Let the values of f(i, j) will be saved in dp[i][j]. Initially set  

dp[i][j] = ∞ (i ≠ j), dp[i][i] = 0 

 

Next compute the values dp[i][i + 1] = pi−1 * pi * pi+1: 

 dp[1][2] = p0 * p1 * p2 = 2 * 4 * 5 = 40; 

 dp[2][3] = p1 * p2 * p3 = 4 * 5 * 3 = 60; 

 dp[3][4] = p2 * p3 * p4 = 5 * 3 * 6 = 90; 

0 ∞ ∞ ∞1

0 ∞ ∞2

0 ∞3

04

1 2 3 4

0 40 ∞ ∞1

0 60 ∞2

0 903

04

1 2 3 4

dp[i][i] = 0 dp[i][i+1] = pi−1 * pi * pi+1
 

 

Continue the computations: 



dp[1][3] = MIN{
dp[1][2] + dp[3][3] + p0p2p3 = 40 + 0 + 2*5*3 = 70 

dp[1][1] + dp[2][3] + p0p1p3 = 0 + 60 + 2*4*3 = 84 

70=

 

dp[2][4] = MIN{
dp[2][3] + dp[4][4] + p1p3p4 = 60 + 0 + 4*3*6 = 132 

dp[2][2] + dp[3][4] + p1p2p4 = 0 + 90 + 4*5*6 = 210 

132=

 
 

And here is how to find the final value dp[1][4]: 

dp[1][4] = MIN{
dp[1][3] + dp[4][4] + p0p3p4 = 70 + 0 + 2*3*6 = 106 

dp[1][2] + dp[3][4] + p0p2p4 = 40 + 90 + 2*5*6 = 190 106=

dp[1][1] + dp[2][4] + p0p1p4 = 0 + 132 + 2*4*6 = 180 

 

0 40 70 1061

0 60 1322

0 903

04

1 2 3 4

 
 

E-OLYMP 9647. Optimal Matrix Multiplication Chain of matrices is given. 

Print the minimum number of multiplications sufficient to multiply all matrices. 

► Declare the constants INF = ∞, MAX = 11 (maximum possible number of 

matrices in the product). Declare arrays dp and p. 
  
#define INF 0x3F3F3F3F3F3F3F3FLL 

#define MAX 11 

long long dp[MAX][MAX], p[MAX]; 

 

Function Mult finds the minimum number of multiplications sufficient to compute 

Aij = Ai * Ai+1 * … * Aj-1 * Aj, which is saved in the cell dp[i][ j]. 
 
long long Mult(int i, int j) 

{ 

  if (dp[i][j] == INF) 

    for (int k = i; k < j; k++) 

    { 

      long long temp = Mult(i, k) + Mult(k + 1, j) +  

                       p[i - 1] * p[k] * p[j]; 

      if (temp < dp[i][j]) dp[i][j] = temp; 

  } 

  return dp[i][j]; 

https://www.e-olymp.com/en/problems/9647


} 

 

In the main part of the program after reading the data, make a call 
Mult(1,n); 

to compute the result, the minimum number of multiplications to find the optimal 

product of matrices A1 * A2 * … * An-1 * An. 

 

E-OLYMP 1521. Optimal Matrix Multiplication - 2 Chain of matrices is given. 

Find the way to multiply them minimizing the number of scalar multiplications. 

► Use the recurrent formula given above. 

 

 

 

https://www.e-olymp.com/en/problems/1521

