
Dynamic programming

Problems with parentheses

E-OLYMP 1551. Correcting parenthesization Given a string of parentheses, we

must turn it into a well formed string by changing as few characters as possible (we

cannot delete or insert characters).

There are three kinds of parentheses: regular (), brackets [] and curly brackets {}.

Each pair has an opening ('(', '[' and '{' respectively) and a closing (')', ']' and '}')

character.

A well formed string of parentheses is defined by the following rules:

 The empty string is well formed.

 If s is a well formed string, (s), [s] and {s} are well formed strings.

 If s and t are well formed strings, the concatenation st is a well formed

string.

As examples, "([{}])", "" and "(){}[]" are well formed strings and "([}]", "([)]" and

"{" are malformed strings.

For the given string of parentheses find the minimum number of characters that

need to be changed to make it into a well formed string.

► Let f(i, j) be the smallest number of characters that can be changed so that the

substring sisi+1…sj-1sj becomes correct. Then the following statements hold:

1. f(i, j) = 0 for i > j, since in this case the substring will be empty.

2. f(i, j) = f(i + 1, j – 1) + enc(si ,sj). Make si to be the opening parenthesis and sj to

be the corresponding closing parenthesis. Further, recursively consider the substring

si+1…sj-1.

si+1…sj-1()

i ji+1 j-1

Function enc(si ,sj) returns:

а) 0, if the characters si and sj are matching opening and closing parentheses;

б) 2, if si is a closing parenthesis and sj is an opening parenthesis;

в) 1 otherwise. In this case, it is enough to change one of the symbols si or sj so

that they form the correct pair of parenthesis;

3. f(i, j) =
jki

min (f(i, k) + f(k + 1, j)). Consider the sequence sisi+1…sj-1sj as a

sequence of two regular parenthesis structures: si…sk и sk+1…sj. The length of a

substring si…sk must be even, hence k takes the values i + 1, i + 3, …, j – 2.

sk+1…sj

k+1 j

si…sk

ki

f(i,k) f(k+1,j)

https://www.e-olymp.com/en/problems/1551

Consider the first line from the sample.

f(0, 7) = f(0, 3) + f(4, 7) = (2 + f(1, 2)) + (0 + f(5, 6)) = (2 + 0) + (0 + 1) = 3

] () [((()

f(0,3) = 2

0 1 2 3 4 5 6 7

f(4,7) = 1

2 + f(1,2)

=

0

=

f(5,6) = 1

=

Store the values of f(i, j) in m[i][j]. Read the input string into s.

int m[51][51], res;

string s;

Implementation of the function enc(c, d).

int enc(char c, char d)

{

 string p = "([{)]}";

Function returns 2 if c is a closing parenthesis and d is an opening parenthesis.

 if (p.find(c) / 3 > 0 && p.find(d) / 3 < 1) return 2;

Function returns 0, if c and d are the corresponding parentheses. If they are not in

the correct order, the function will return the value 2 above.

 if (p.find(c) % 3 == p.find(d) % 3 && c != d) return 0;

In all other cases, return 1.

 return 1;

}

Function f(i, j) returns the smallest number of characters that can be changed so

that the substring sisi+1…sj-1sj becomes valid.

int f(int i, int j)

{

 if (i > j) return 0;

 if (m[i][j] != -1) return m[i][j];

 int r = f(i+1,j-1) + enc(s[i],s[j]);

 for(int k = i + 1; k < j; k += 2)

 r = min(r,f(i,k) + f(k+1,j));

 return m[i][j] = r;

}

The main part of the program. Process multiple test cases.

while(cin >> s)

{

 memset(m,-1,sizeof(m));

The answer to the problem is the value f(0, |s| – 1), where s is the input string.

 res = f(0, s.size() - 1);

 cout << res << endl;

}

E-OLYMP 7447. Cut a string You are given a string s. It is allowed to take any

two same neighbor symbols of this string and delete them. This operation you can do

while possible. At the beginning you can choose any symbols from string and delete

them. Determine the minimum number of symbols you can delete at the beginning, so

that you get the empty string after performing allowed operations.

► Let dp[l][r] = f(l, r) be the minimum number of characters that should be

removed from the substring sl..sr, so that later, as a result of applying operations

(removing identical adjacent characters), an empty string can be obtained. Then:

 f(l, r) = 0, if l > r;

 f(l, l) = 1, single character should be removed at the beginning;

 f(l, r) = f(l + 1, r – 1), if s[l] = s[r]. If the leftmost and the rightmost

characters are the same, then the inner part should be deleted, after which

these characters become adjacent and they can be deleted by applying the

operation;

sl sr

f(l + 1, r - 1)
f(l, r)

l l + 1 r - 1 r

sl = sr

 f(l, r) = 1 + f(l + 1, r), if we remove the first character;

 f(l, r) = 1 + f(l, r – 1), if we remove the last character;

However, the last two conditions can be included in the following: to solve the

problem on the segment [l; r] let’s solve the problem separately on segments [l; i] and [i

+ 1; r] (l ≤ i < r) and take the smallest result:

f(l, r) =),1(),(min
1

rifilf
ri

f (i + 1, r)f (l, i)

l i ri + 1

f(l, r)

For example, the case of removing the first character from the string is equivalent

to i = l (then f(l, l) = 1), and the case of removing the last character is equivalent to i = r

– 1 (f (r, r) = 1).

https://www.e-olymp.com/en/problems/7447

f (l + 1, r)

l rl + 1

f(l, r)

f(l, l)

f (l, r - 1)

rr - 1l

f(l, r)

f(r, r)

The answer to the problem is dp[0][n – 1] = f(0, n – 1), where n is the length of the

input string.

Consider the sample given in the problem statement. We have:

f(0, 7) = f(0, 2) + f(3, 7) = 1 + 1 = 2

a b a c d e e c

f(0,2) = 1

0 1 2 3 4 5 6 7

f(3,7) = 1

f(1,1)

=

1

=

f(4,6) = 1

=

f(4,4) + f(5,6)

=

1

=

0

=

Declare the arrays.

#define MAX 101

#define INF 0x3F3F3F3F

int dp[MAX][MAX];

string s;

Let f(l, r) be the solution of the problem on the segment [l; r].

int f(int l, int r)

{

 if (l > r) return 0;

 if (l == r) return 1;

 if (dp[l][r] != INF) return dp[l][r];

 int &res = dp[l][r];

 if (s[l] == s[r])

 res = min(res, f(l + 1, r - 1));

 for (int i = l; i < r; i++)

 res = min(res, f(l, i) + f(i + 1, r));

 return res;

}

The main part of the program. Read the line.

cin >> s;

memset(dp,0x3F,sizeof(dp));

Compute and print the answer f(0, n – 1), where n is the length of string s.

printf("%d\n",f(0, s.size() - 1));

Problems with palindromes

E-OLYMP 470. Super palindromes The palindrome is a string longer than one

character, that reads the same right to left and left to right. The super palindrome is a

string that can be represented as a concatenation of one or more palindromes. Given the

string s. Find the number of substrings in s that are super palindromes.

► Let s be the input string. The substring si … sj is a palindrome, if:

 i ≥ j (substring is empty or consists of one character);

 si = sj and si+1…sj-1 is a palindrome;

Let function IsPal(i, j) returns 1, if si…sj is a palindrome, and 0 otherwise.

Memoize the values of IsPal(i, j) in pal[i][j].

a b c b a

1 2 3 4 5

IsPal(2, 4)

s1 = s5

IsPal(1, 5)

A string is a super palindrome if it can be represented as the concatenation of one

or more palindromes. For example, the following strings are superpalindromes:

x x a b b a y t y

a b c b a a a a b a

Let dp[i][j] = 1, if substring si…sj (i < j) is a super palindrome and dp[i][j] = 0

otherwise. Iterate over the pairs (i, j) for 0 ≤ i < j < n and if the substring si…sj is a

palindrome, then it is a super palindrome, set dp[i][j] = 1. Note that dp[i][j] = 0 for i ≥ j.

A word of one letter is not considered a palindrome, therefore, as a special case, we

have dp[i][i] = 0.

For each pair (i, j), iterate over all possible values of k (i < k < j – 1) and if si…sk

and sk+1…sj are super palindromes (they consist of more than one symbol due to the

restriction on k), then si…sj is a super palindrome.

a b a b c

1 2 3 4 5

dp[1][3] = 1

c b

6 7

dp[4][7] = 1

dp[1][7] = 1

It remains to compute the number of pairs (i, j) for which i < j and dp[i][j] = 1.

This number is the answer.

There are 5 substrings for aaaba, which are super palindromes.

https://www.e-olymp.com/en/problems/470

a a a b a

a a a b a

a a a b a

a a a b a

a a a b a

Declare the input string s and arrays.

#define MAX 1010

char s[MAX];

int dp[MAX][MAX], pal[MAX][MAX];

Implement the recursive function IsPal(i, j), which returns 1 if si…sj is a

palindrome. Otherwise, the function returns 0. The substring si … sj is a palindrome if si

= sj and si+1…sj-1 is a palindrome. Store the values IsPal(i, j) in pal[i][j].

int IsPal(int i, int j)

{

 if (i >= j) return pal[i][j] = 1;

 if (pal[i][j] != -1) return pal[i][j];

 return pal[i][j] = (s[i] == s[j]) && IsPal(i+1,j-1);

}

Function f(i, j) returns 1, if si…sj is a super palindrome.

int f(int i, int j)

{

Super palindrome must contain more than one symbol.

 if (i == j) return dp[i][j] = 0;

If f(i, j) is already computed, return its value.

 if (dp[i][j] != -1) return dp[i][j];

If a substring si…sj (i < j) is a palindrome, then it is also a super palindrome.

 if (IsPal(i,j)) return dp[i][j] = 1;

If si…sk (i < k) is a palindrome, and sk+1…sj (k + 1 < j) is a super palindrome, then

si…sj is a super palindrome.

 for(int k = i + 1; k < j - 1; k++)

 if(IsPal(i,k) && f(k + 1,j)) return dp[i][j] = 1;

If none of the above conditions is satisfied, then si…sj is not a super palindrome.

 return dp[i][j] = 0;

}

The main part of the program. Read the input string s. Initialize the dp and pal

arrays.

gets(s); n = strlen(s);

memset(dp,-1,sizeof(dp));

memset(pal,-1,sizeof(pal));

In the variable res, count the number of super palindromes.

res = 0;

for(i = 0; i < n; i++)

for(j = i + 1; j < n; j++)

 res += f(i,j);

Print the answer.

printf("%d\n",res);

E-OLYMP 873. Palindromes Non-empty string containing a certain word is

called palindrome if it reads the same from left to right and from right to left.

Let we are given a word s, consisting of n uppercase letters of Latin alphabet.

Deleting from the word a certain set of characters, you can get the palindrome string.

Find the number of ways to delete from the word some (possibly empty) set of symbols

so that the resulting string is a palindrome. Ways in different order of deleting

characters are considered equal.

► Let dp[i][j] stores the number of palindromes that can be obtained from the

substring si…sj by deleting letters. Then dp[i][i] = 1, since a word of one character is a

palindrome.

Let si = sj = X, substring si…sj has the form XPX. Here P denotes the substring

si+1…sj-1. Split the palindromes of the string XPX into non-overlapping groups:

 include the left X and do not include the right X. The number of

palindromes equals to the number of palindromes in string XP minus the

number of palindromes in P, that equals to dp[i][j – 1] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i][j-1]

X

j

 include the right X and do not include the left X. The number of

palindromes equals to the number of palindromes in string PX minus the

number of palindromes in P, that equals to dp[i + 1][j] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i+1][j]

X

j

https://www.e-olymp.com/en/problems/873

 the palindromes of the string P. Their number equals to dp[i + 1][j – 1].

However, with each palindrome Q of string P, we can construct the XQX

palindrome. The number of palindromes of the form XQX will also be dp[i

+ 1][j – 1].

PX

i j – 1i + 1

dp[i+1][j-1]

X

j

 palindrome XX (one palindrome).

X X

The total number of palindromes for the case si = sj is

(dp[i][j – 1] – dp[i + 1][j – 1]) +

(dp[i + 1][j] – dp[i + 1][j – 1]) +

2 * dp[i + 1][j – 1] +

1

= dp[i][j – 1] + dp[i + 1][j] + 1.

Let si ≠ sj, substring si…sj has the form XPY (si = X, sj = Y). Split the palindromes

of the string XPY into non-overlapping groups:

 include the symbol X and do not include the symbol Y. The number of

palindromes equals to the number of palindromes in string XP minus the

number of palindromes in P, that equals to dp[i][j – 1] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i][j-1]

Y

j

 include the symbol Y and do not include symbol X. The number of

palindromes equals to the number of palindromes in string PY minus the

number of palindromes in P, that equals to dp[i + 1][j] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i+1][j]

Y

j

 palindromes of the string P. Their number is dp[i + 1][j – 1].

PX

i j – 1i + 1

dp[i+1][j-1]

Y

j

The total number of palindromes for the case si ≠ sj is

 (dp[i][j – 1] – dp[i + 1][j – 1]) +

(dp[i + 1][j] – dp[i + 1][j – 1]) +

dp[i + 1][j – 1]

= dp[i][j – 1] + dp[i + 1][j] – dp[i + 1][j – 1].

By deleting the letters from the string aba, you can get 5 palindromes.

a b a a b a a b a

a b a a b a

Consider the string abab = s0s1s2s3. Since s0 ≠ s3, the substring s0…s3 has the form

XPY. Hence dp[0][3] =

(dp[0][2] – dp[1][2]) +

(dp[1][3] – dp[1][2]) +

dp[1][2] =

= dp[0][2] + dp[1][3] – dp[1][2] = 5 + 5 – 2 = 8.

a b a b

a b a b a b a b

b

a

a

a a

a b a

b

b b

b a b

0 1 2 3

0 1 2 1 2 31 2

dp[0][2] - dp[1][2] = 3

dp[1][2] = 2

dp[1][3] - dp[1][2] = 3

Consider the string abcba = s0s1s2s3s4. Since s0 = s4, the substring s0…s4 has the

form XPX. Hence dp[0][4] =

(dp[0][3] – dp[1][3]) +

(dp[1][4] – dp[1][3]) +

2 * dp[1][3] +

1 =

= dp[0][3] + dp[1][4] + 1 = 6 + 6 + 1 = 13.

a b c b

a b c b c b c

0 1 2 3

0 1 2 1 2 31 2

a

4

b

3

b

3

a

4

b

dp[1][3] = 5dp[0][3] - dp[1][3] = 1 dp[1][4] - dp[1][3] = 1

b c ba a

a a

#include <stdio.h>

#include <string.h>

#define MAX 61

Store the input string in the array s. Declare an array dp.

char s[MAX];

long long dp[MAX][MAX];

int i, j, len, n;

long long f(int i, int j)

{

If i > j, there is no palindromes.

 if (i > j) return 0;

A word of one character is a palindrome, set dp[i][i] = 1.

 if (i == j) return dp[i][j] = 1;

If the value of dp[i][j] is already computed, return it.

 if (dp[i][j] != -1) return dp[i][j];

Compute the value of dp[i][j] depending on whether the symbols si and sj are the

same.

 if (s[i] == s[j])

 dp[i][j] = f(i + 1, j) + f(i, j - 1) + 1;

 else

 dp[i][j] = f(i + 1, j) + f(i, j - 1) - f(i + 1, j - 1);

 return dp[i][j];

}

int main(void)

{

The main part of the program. Read the input string s. Initialize array dp.

 gets(s); n = strlen(s);

 memset(dp, -1, sizeof(dp));

Print the answer.

 printf("%lld\n", f(0, n - 1));

 return 0;

}

E-OLYMP 1535. Skyscrapers The skyline of the city has n buildings all in a

straight line; each building has a distinct height between 1 and n, inclusive. The

building at index i is considered visible from the left if there is no building with a

smaller index that is taller. Similarly, a building is visible from the right if there is no

taller building with a higher index. For example, if the buildings in order are

{1, 3, 5, 2, 4}, then three buildings are visible from the left (1, 3, 5), but only two are

visible from the right (4 and 5).

1 3 5 2 4

1

3

5

4

5

You will be given the total number of buildings n, l buildings visible from the left,

and r buildings visible from the right. Find the number of permutations of the buildings

that are consistent with these values.

► Suppose it remains to arrange n houses, l of which should be visible from the

left, and r from the right. Let its possible to do in f(n, l, r) ways. Consider the house

with the smallest height. If you put it on the left, then it will always be visible, and the

remaining houses can be arranged in f(n – 1, l – 1, r) ways. If the house with the

smallest height is placed on the right, then it will always remain visible on the right, the

rest of the houses can be arranged in f(n – 1, l, r – 1) ways. The smallest house can be

placed between the other houses in n – 2 ways. In this case it will not be visible, so the

remaining houses can be arranged in (n – 2) * f(n – 1, l, r) ways.

1

2 … n

f(n - 1, l - 1, r)

1

(n - 2) * f(n - 1, l, r)

2 … n

f(n - 1, l, r - 1)

1

Note that for n = 1 the only possible arrangement will be only for l = r = 1. We

obtain the recurrence relation:

https://www.e-olymp.com/en/problems/1535

f(n, l, r) = f(n – 1, l – 1, r) + f(n – 1, l, r – 1) + (n – 2) * f(n – 1, l, r),

f(1, 1, 1) = 1,

f(1, x, y) = 0, when x and y are not simultaneously equal to 1

Construct all permutations of houses for n = 4, l = 2, r = 2.

f(4, 2, 2) = f(3, 1, 2) + 2 * f(3, 2, 2) + f(3, 2, 1) = 1 + 2 * 2 + 1 = 6

1

2, 3, 4

f(3, 1, 2)

1

2 * f(3, 2, 2)

2, 3, 4

f(3, 2, 1)

1

1
1

3
21

4

2

3

4

2

3
4

1
2

3
4

1

3
2

4

1
2

3
4

2 * f(3, 2, 2)f(3, 1, 2) f(3, 2, 1)

Declare a three-dimensional array dp, where dp[i][j][k] will store the value f(i, j, k).

#define MAX 101
int dp[MAX][MAX][MAX];

Function f returns the number of ways that n houses can be arranged so that l can

be visible from the left and r houses can be visible from the right.

long long f(int n, int l, int r)

{

 if (n == 1) return (l == 1 && r == 1) ? 1 : 0;

 if ((l < 1) || (r < 1)) return 0;

 if (dp[n][l][r] != -1) return dp[n][l][r];

 dp[n][l][r] = (f(n - 1, l - 1, r) + f(n - 1, l, r - 1) + (n - 2)*f(n

- 1, l, r)) % 1000000007;

 return dp[n][l][r];

}

The main part of the program. Read the input data. Compute and print the answer.

while (scanf("%d %d %d", &n, &l, &r) == 3)

{

 memset(dp, -1, sizeof(dp));

 res = f(n, l, r);

 printf("%d\n", res);

}

