Dynamic programming
Problems with parentheses

E-OLYMP 1551. Correcting parenthesization Given a string of parentheses, we
must turn it into a well formed string by changing as few characters as possible (we
cannot delete or insert characters).

There are three kinds of parentheses: regular (), brackets [] and curly brackets {}.
Each pair has an opening ('(, '[' and '{' respectively) and a closing ()", ']' and '})
character.

A well formed string of parentheses is defined by the following rules:

e The empty string is well formed.

e |fsisawell formed string, (s), [s] and {s} are well formed strings.

e If s and t are well formed strings, the concatenation st is a well formed
string.

As examples, "([{3D", "™ and "(){}]" are well formed strings and "([}]", "(D]" and
"{" are malformed strings.

For the given string of parentheses find the minimum number of characters that
need to be changed to make it into a well formed string.

» Let f(i, j) be the smallest number of characters that can be changed so that the
substring siSi+1. ..Sj-15; becomes correct. Then the following statements hold:

1. f(i, j) = 0 for i > j, since in this case the substring will be empty.

2.1(i,j) =f(i + 1,] — 1) + enc(si ,s;). Make s; to be the opening parenthesis and s; to
be the corresponding closing parenthesis. Further, recursively consider the substring
Si+1...5j-1.
i i+1 -1 j

(Si+1---Sj-1)

Function enc(s; ,s;) returns:
a) 0, if the characters s; and s; are matching opening and closing parentheses;
0) 2, if si is a closing parenthesis and s; is an opening parenthesis;
B) 1 otherwise. In this case, it is enough to change one of the symbols s; or s;j so
that they form the correct pair of parenthesis;

3. f(i, j) = mirj](f(i, k) + f(k + 1, j)). Consider the sequence SiSi+1...Sj-1Sj as a

sequence of two regular parenthesis structures: Si...Sx u Sk...Sj. The length of a

substring si...sx must be even, hence k takes the values i+ 1,1+3, ..., j— 2.
i k k+1 j

Si...Sk Sk+1---5j

<+—f(i,kK)—»= f(k+1,))——»

https://www.e-olymp.com/en/problems/1551

Consider the first line from the sample.
f(0,7)=1(0,3)+f4,7)=(2+f(1,2)+(O0+15,6)=(2+0)+(0+1)=3

0 1 2 3 4 5 6 7

| GO D A A O R GO I G

<+—f(0,3) = 2—»<4—F(4,7) = 1—>»
I I
2 +1(1,2) f(5,6) =1
1
0

Store the values of f(i, j) in m[i][j]. Read the input string into s.

int m[51][51], res;
string s;

Implementation of the function enc(c, d).
int enc(char ¢, char d)

{
string p = "([{)]1}";

Function returns 2 if ¢ is a closing parenthesis and d is an opening parenthesis.

if (p.find(c) / 3 > 0 && p.find(d) / 3 < 1) return 2;

Function returns 0O, if ¢ and d are the corresponding parentheses. If they are not in
the correct order, the function will return the value 2 above.

if (p.find(c) % == p.find(d) % 3 && c != d) return O0;
In all other cases, return 1.

return 1;

}

Function f(i, j) returns the smallest number of characters that can be changed so
that the substring siSi+1...s;.1S; becomes valid.

int f£(int i, int 3J)

{

if (1 > j) return 0;

if (m[i][j] !'= -1) return m[i][]];
int r = £(i+1,3j-1) + enc(s[i],s[3]);
for(int k = 1 + 1; k < J; k += 2)

r = min(r,£(i,k) + £(k+1,3));

return m[i] []J] = r;

}

The main part of the program. Process multiple test cases.

while (cin >> s)

{

memset (m, -1, sizeof (m));

The answer to the problem is the value (0, |s| — 1), where s is the input string.

res = £(0, s.size() - 1);
cout << res << endl;

}

E-OLYMP 7447. Cut a string You are given a string s. It is allowed to take any
two same neighbor symbols of this string and delete them. This operation you can do
while possible. At the beginning you can choose any symbols from string and delete
them. Determine the minimum number of symbols you can delete at the beginning, so
that you get the empty string after performing allowed operations.

» Let dp[l][r] = f(l, r) be the minimum number of characters that should be
removed from the substring s..S;, so that later, as a result of applying operations
(removing identical adjacent characters), an empty string can be obtained. Then:

o f(I,nN=0,ifl>r;

o f(I, 1) = 1, single character should be removed at the beginning;

o f(I, r) =11 + 1, r — 1), if s[I] = s[r]. If the leftmost and the rightmost
characters are the same, then the inner part should be deleted, after which
these characters become adjacent and they can be deleted by applying the
operation;

S| =S¢
Y

S| Sr

<«—f(+1.r-1)—>»
- f(l, r) >

o f(I,)=1+1f(1+1,r),if weremove the first character;
e f(I,r)=1+1(,r-1),if we remove the last character;
However, the last two conditions can be included in the following: to solve the
problem on the segment [I; r] let’s solve the problem separately on segments [I; i] and [i
+ 1; r] (1<i <r) and take the smallest result:

f(l,) = min(f(.)+ fi+1r))
i i+1 r

£, 1) fi+1,r)

- f(l, r) >

For example, the case of removing the first character from the string is equivalent
to i = | (then f(l,) = 1), and the case of removing the last character is equivalentto i =r
-1(f(r,r)=1).

https://www.e-olymp.com/en/problems/7447

(1, 1)

| I+1

f+1,r1)

>

- f(l, r)

f(r, r)

f(,r-1)

- f(l, r) >

The answer to the problem is dp[0][n — 1] = (0, n — 1), where n is the length of the

input string.

Consider the sample given in the problem statement. We have:
f(0,7)=1(0,2)+f(3,7)=1+1=2

0 1

2

3

4 5 6 7

a b

a

c

d e e C

<+f(0,2) = 1»<«—F3,7) =1—>»

1
f(1,1)
1
1

Declare the arrays.

#define MAX 101
#define INF Ox3F3F3F3F
int dp[MAX] [MAX];
string s;

11
f(4,6) = 1
1

f(4,4) + 1(5,6)

I I
1 0

Let f(l, r) be the solution of the problem on the segment [I; r].

int f£(int 1, int r)
{

if (1 > r) return O;
if (1 == r) return 1;
if (dpl[l][r] != INF)
int &res = dpl[l]lr];
if (s[l] == s[r])
res = min (res,
for (int i = 1; 1 < r; i++)

res = min(res, f£(1, 1i)
return res;

}

return dpl[l]I[r];

f(1+1, r-1));

+ f£f(1 + 1, r));

The main part of the program. Read the line.

cin >> s;
memset (dp, 0x3F, sizeof (dp))

’

Compute and print the answer (0, n — 1), where n is the length of string s.

printf ("$d\n",f (0, s.size() - 1));

Problems with palindromes

E-OLYMP 470. Super palindromes The palindrome is a string longer than one
character, that reads the same right to left and left to right. The super palindrome is a
string that can be represented as a concatenation of one or more palindromes. Given the
string s. Find the number of substrings in s that are super palindromes.

» Lets be the input string. The substring s; ... s; is a palindrome, if:

e > (substring is empty or consists of one character);
e S =s;jand Si+1...Sj-1 IS a palindrome;
Let function IsPal(i, j) returns 1, if s;...s; is a palindrome, and O otherwise.

Memoize the values of IsPal(i, j) in pal[i][j].
1 2 3 4 5

a b (> b a

IsPal(2, 4)
S1 = Ss
<7 >
IsPal(1, 5)

A string is a super palindrome if it can be represented as the concatenation of one
or more palindromes. For example, the following strings are superpalindromes:

X | x|la|b|bl|la|]y|t]|y

al|l b | c| b | a al|lal|la| b | a

Let dp[i][j] = 1, if substring si...s; (i <) is a super palindrome and dp[i][j] = O
otherwise. Iterate over the pairs (i, j) for 0 < i <j < n and if the substring s;...s; is a
palindrome, then it is a super palindrome, set dp[i][j] = 1. Note that dp[i][j] = O for i >]j.
A word of one letter is not considered a palindrome, therefore, as a special case, we
have dp[i][i] = 0.

For each pair (i, j), iterate over all possible values of k (i <k <j—1) and if s;...s«
and Sy+1...S; are super palindromes (they consist of more than one symbol due to the

restriction on k), then s;...s; is a super palindrome.
1 2 3 4 5 6 7

al|b|la|b|]c]|]c|b

- -
dp[1](3] = 1 dp[4][7] = 1
- -
dp[1][7] =1
It remains to compute the number of pairs (i, j) for which i <j and dp[i][j] = 1.
This number is the answer.

There are 5 substrings for aaaba, which are super palindromes.

https://www.e-olymp.com/en/problems/470

Declare the input string s and arrays.

#define MAX 1010
char s[MAX];
int dp[MAX] [MAX], pal[MAX] [MAX];

Implement the recursive function IsPal(i, j), which returns 1 if si...s; is a
palindrome. Otherwise, the function returns 0. The substring s; ... s;j is a palindrome if s;
= sj and Si+1...Sj1 IS a palindrome. Store the values IsPal(i, j) in pal[i][j].

int IsPal(int i, int 73j)

{

if (i >= j) return pallil[j] = 1;

if (pallill[3j] '= -1) return pallillj]:

return pall[i][j] = (s[i] == s[]j]) && IsPal(i+l,]j-1);
}
Function f(i, j) returns 1, if s;...s;j is a super palindrome.

int f(int i, int 3J)
{

Super palindrome must contain more than one symbol.
if (i == j) return dpl[i][j] = 0;

If (i, J) is already computed, return its value.
if (dpl[i]l[j] != -1) return dp[il[j];

If a substring si...s; (i <j) is a palindrome, then it is also a super palindrome.
if (IsPal(i,j)) return dpl[il([j] = 1;

If si...sk (i <k) is a palindrome, and Si1...Sj (K + 1 <j) is a super palindrome, then
Si...Sj is a super palindrome.

k++)

for(int k =1 + 1; k ;
)) return dpl[il[]J] = 1;

<3 -1
if (IsPal(i,k) && f(k + 1,7

If none of the above conditions is satisfied, then s;...s; is not a super palindrome.

return dp[i][j] = O;
}

The main part of the program. Read the input string s. Initialize the dp and pal
arrays.

gets(s); n = strlen(s);
memset (dp, -1, sizeof (dp)) ;
memset (pal,-1,sizeof (pal));

In the variable res, count the number of super palindromes.
for (i 0; i < n; 1i++)

for (j i+ 1; 3 < n; j++)
res += f£(i,J);

res = 0;

Print the answer.

printf ("%d\n", res);

E-OLYMP 873. Palindromes Non-empty string containing a certain word is
called palindrome if it reads the same from left to right and from right to left.

Let we are given a word s, consisting of n uppercase letters of Latin alphabet.
Deleting from the word a certain set of characters, you can get the palindrome string.
Find the number of ways to delete from the word some (possibly empty) set of symbols
so that the resulting string is a palindrome. Ways in different order of deleting
characters are considered equal.

» Let dpli][j] stores the number of palindromes that can be obtained from the
substring s;...s; by deleting letters. Then dp[i][i] = 1, since a word of one character is a
palindrome.

Let si = s; = X, substring si...s; has the form XPX. Here P denotes the substring
Si+1...Sj-1. Split the palindromes of the string XPX into non-overlapping groups:
e include the left X and do not include the right X. The number of
palindromes equals to the number of palindromes in string XP minus the
number of palindromes in P, that equals to dp[i][j — 1] — dp[i + 1][j — 1];
[i+1 i-1 j

X P

<«—dp[i+1][j-1]—»
<«—dp[i]j-1—

e include the right X and do not include the left X. The number of
palindromes equals to the number of palindromes in string PX minus the
number of palindromes in P, that equals to dp[i + 1][j] — dp[i + 1][j — 1];

i i+l i-1

B - |

<«—dp[i+1][j-1]—»
<«—dp[i+1][[—

https://www.e-olymp.com/en/problems/873

e the palindromes of the string P. Their number equals to dp[i + 1][j — 1].
However, with each palindrome Q of string P, we can construct the XQX
palindrome. The number of palindromes of the form XQX will also be dpJi

+ 1][j — 1].

<«—dp[i+1][j-1]—»

e palindrome XX (one palindrome).

The total number of palindromes for the case s; = s; is
(dp[illj — 1] — dp[i + 1][- 1]) +
(dp[i +1]0] —dp[i + 1][j - 1]) +
2*dp[i+1][j - 1] +
1
= dp[i]0 — 1] + dp[i + 1][j] + 1.

Let si # sj, substring s;...s; has the form XPY (s; = X, s; = Y). Split the palindromes
of the string XPY into non-overlapping groups:
e include the symbol X and do not include the symbol Y. The number of
palindromes equals to the number of palindromes in string XP minus the
number of palindromes in P, that equals to dp[i][j — 1] — dp[i + 1][j — 1];
[i+1 i-1 j

X P

<«—dp[i+1][j-1]—»
<«——dp[i]j-1]——

e include the symbol Y and do not include symbol X. The number of
palindromes equals to the number of palindromes in string PY minus the
number of palindromes in P, that equals to dp[i + 1][j] — dp[i + 1][j — 1];

i+l -1

B - |

<«—dp[i+1][j-1]—»
+—dp[i+1][j]—

e palindromes of the string P. Their number is dp[i + 1][j — 1].

i i+1 -1
] - [
<«—dp[i+1][j-1]—>»

The total number of palindromes for the case s; # s; IS

(dp[iI0 — 1] —dpli + 1] -1]) +

(dp[i +1]0] —dp[i + 110 — 1]) +
dp[i + 1][j — 1]
= dp[i][j — 1] + dpli + 1]0] - dp[i + 1][j — 1].
By deleting the letters from the string aba, you can get 5 palindromes.

a b a a b a a b a

Consider the string abab = s¢515,53. Since sy # Ss, the substring So...S3 has the form

XPY. Hence dp[0][3] =
(dp[0][2] — dp[1][2]) +
(dp[1][3] - dp[1][2]) +

dp[1][2] =
= dp[0][2] + dp[1][3] — dp[1][2] =5 +5-2=8.

0 1 2 3

a b a b
0 1C 1 2 1\‘ 2 3
a b a b a b al|b
a b b
a| a &l b | b
al|b| a dp[1][2] =2 b|al|b

dp[0][2] - dp[1][2] = 3 dp[1][3] - dp[1][2] = 3

Consider the string abcba = $051525354. Since Sp = Sa, the substring So...Ss has the
form XPX. Hence dp[0][4] =
(dp[O][3] - dp[1][3]) +

(dp[1][4] - dp[1][3]) +
2 * dp[1][3] +
1=
= dp[0][3] + dp[L][4] + 1=6 + 6 + 1 = 13,

v
o
o
o
o
o
o
o
o
o

v

dp[0][3] - dp[1](3] = 1 dp[1][3] =5 dp[1][4] - dp[1](3] = 1

a b c b a

#include <stdio.h>
#include <string.h>
#define MAX 61

Store the input string in the array s. Declare an array dp.
char s[MAX];
long long dp[MAX] [MAX];

int i, j, len, n;

long long f(int i, int 7j)
{

If i >, there is no palindromes.
if (i > j) return 0;

A word of one character is a palindrome, set dp[i][i] = 1.
if (i == j) return dpl[i][j] = 1;

If the value of dp[i][j] is already computed, return it.
if (dplil[j] != -1) return dplil[jl;

Compute the value of dp[i][j] depending on whether the symbols s; and s; are the
same.

if (s[i] == s[J])
dp(1][J] = £(1 + 1, 3) + £(i, J - 1) + 1;
else
dplil[j] = £(1 + 1, J) + £(i, 7 - 1) - £(1 + 1, J - 1);

return dpl[i][j];
}

int main (void)

{

The main part of the program. Read the input string s. Initialize array dp.

gets(s); n = strlen(s);
memset (dp, -1, sizeof (dp)):;

Print the answer.

printf ("$11d\n", £(0, n - 1));
return 0;

}

E-OLYMP 1535. Skyscrapers The skyline of the city has n buildings all in a
straight line; each building has a distinct height between 1 and n, inclusive. The
building at index i is considered visible from the left if there is no building with a
smaller index that is taller. Similarly, a building is visible from the right if there is no
taller building with a higher index. For example, if the buildings in order are
{1, 3,5, 2, 4}, then three buildings are visible from the left (1, 3, 5), but only two are
visible from the right (4 and 5).

o
Y

—1»

1 3 5 2 4

You will be given the total number of buildings n, | buildings visible from the left,
and r buildings visible from the right. Find the number of permutations of the buildings
that are consistent with these values.

» Suppose it remains to arrange n houses, | of which should be visible from the
left, and r from the right. Let its possible to do in f(n, I, r) ways. Consider the house
with the smallest height. If you put it on the left, then it will always be visible, and the
remaining houses can be arranged in f(n — 1, 1 — 1, r) ways. If the house with the
smallest height is placed on the right, then it will always remain visible on the right, the
rest of the houses can be arranged in f(n — 1, I, r — 1) ways. The smallest house can be
placed between the other houses in n — 2 ways. In this case it will not be visible, so the
remaining houses can be arranged in (n —2) * f(n— 1, I, r) ways.

1 1 1

<«—f(n-1,1-1,r— <«(n-2)*f(n-1,1,r—» <«—f(n-1,1,r-1)—»

Note that for n = 1 the only possible arrangement will be only for | = r = 1. We
obtain the recurrence relation:

https://www.e-olymp.com/en/problems/1535

fn, ,LN=fh-2,1-1,nN+fn-1, L, r-1)+(n-2)*f(n-1,1,r),
f(1,1,1) =1,
(1, x, y) = 0, when x and y are not simultaneously equal to 1

Construct all permutations of houses forn=4,1=2,r = 2.
f(4,2,2)=1(3,1,2)+2*1(3,2,2)+1(3,2,1)=1+2*2+1=6

2,3,4 2,3,4
1 1 1
<+—f(3, 1, 2)—» <+—2*1(3, 2, 2—» -—f(3, 2, 1)—
fh 4
3 3
— 2 2 +—
1 ’7 1
4 — — 4
3 — — 3
2 .| 4 s 2
1 of] (e 1
1 1
(3,1, 2)— +«—2*1(3, 2, 2)—>» -—f(3, 2, 1)—»

Declare a three-dimensional array dp, where dp[i][j][k] will store the value f(i, j, k).

#define MAX 101
int dp[MAX] [MAX] [MAX];

Function f returns the number of ways that n houses can be arranged so that | can
be visible from the left and r houses can be visible from the right.

long long f(int n, int 1, int r)

if (n == 1) return (L == 1 && r ==1) 2 1 : 0;

if ((1 < 1) || (r < 1)) return 0;

if (dp[n]l[1l][r] != -1) return dpln][l]llr];

dp[n][1][r] = (f(n - 1, 1 -1, r) + f(n -1, 1, r = 1) + (n - 2)*f(n

-1, 1, r)) % 1000000007;
return dp[n][1][r];
}

The main part of the program. Read the input data. Compute and print the answer.

while (scanf("%d %d %d", &n, &1, &r) == 3)
{

memset (dp, -1, sizeof (dp)):;

res = f(n, 1, r);

printf ("$d\n", res);

}

