
Dynamic programming

Coin exchange problems

E-OLYMP 1283. Banking reform According to unconfirmed rumors the banking

reform is approaching, and you decide to make for it some proposals – and what if they

suddenly will be accepted, and even you will be payed for these ideas?

Your idea is to change the denominations in coin circulation. By your opinion, it

should be coins 1, 5, 10, 25 and 50 and how to call the petty cash – let the central bank

decides.

However, the Central Bank has immediately demanded you to provide information

about how many ways are there to represent in cash the given amount of money up

to 7489 inclusive. Why up to this amount? And how the bank will name them? But who

knows: the bankers have their quirks, we also name them for simplicity, just coins.

For example, an amount of 11 units can be represented in the form 10 * 1 coin

+ 1 * 1 coin, or 5 * 2 coins + 1 * 1 coin, or 5 * 1 coin + 1 * 6 coins or 11 * 1 coin, i.e.

total in four ways.

Your task is to write a program to count the number of ways – to quickly respond

to any request from the bankers.

► Let f(k, n) be the number of ways to make up the sum n using the first k

denominations of coins. It equals to the number of ways to make up the sum of n using

the first (k – 1) denominations only (that is, without using the k-th denomination) plus

the number of ways to make up the sum (n – ak) using k denominations. We have the

relation:

f(k, n) = f(k – 1, n) + f(k, n – ak)

f(k,n – ak)k

0

0 n

f(k – 1,n)

n - ak

f(k,n)

Initially set f(0, 0) = 1, f(0, n) = 0, n > 0.

The sum s = 11 can be represented in 4 ways:

1) 10 + 1

2) 5 + 5 + 1

3) 5 + 1 + 1 + 1 + 1 + 1 + 1

4) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

 k \ n 0 1 2 3 4 5 6 7 8 9 10 11

start 0 1 0 0 0 0 0 0 0 0 0 0 0

c = 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c = 5 2 1 1 1 1 1 2 2 2 2 2 3 3

c = 10 3 1 1 1 1 1 2 2 2 2 2 4 4

https://www.e-olymp.com/en/problems/1283

The denominations of 25 and 50 cents will not affect the result for the amount of

11 cents.

For example, consider the equality f (2, 10) = f (1, 10) + f (2, 5). It means that the

number of ways to represent number 10 using two denominations of coins 1 and 5

includes:

 f(1, 10) = 1, number of ways to represent 10 with one denomination 1 (10 =

1 + 1 + 1 + … + 1).

 f(2, 5) = 2, number of ways to represent 5 with two denominations 1 and 5

(5 = 1 + 1 + 1 + 1 + 1 and 5 = 5).

Declare the arrays.

#define MAX 7500

long long mas[MAX];

int coins[11] = {1,5,10,25,50};

The main part of the program.

memset(mas,0,sizeof(mas)); mas[0] = 1;

for(i = 0; i < 5; i++)

{

 for(j = coins[i]; j < MAX; j++)

 mas[j] += mas[j - coins[i]];

}

Read the input data and print the result.

while(scanf("%d",&n) == 1)

 printf("%d\n",mas[n]);

Recursion with memoization.

#include <stdio.h>

#include <string.h>

int i, j, n;

int dp[6][7500];

int a[6] = { 0,1,5,10,25,50 };

int f(int k, int n)

{

 if (k == 0 && n == 0) return 1;

 if (k == 0 || n < 0) return 0;

 if (dp[k][n] != -1) return dp[k][n];

 return dp[k][n] = f(k - 1, n) + f(k, n - a[k]);

}

int main(void)

{

 memset(dp, -1, sizeof(dp));

 while (scanf("%d", &n) == 1)

 printf("%d\n", f(5, n));

 return 0;

}

E-OLYMP 9614. Coin change problem You are working at the cash counter at a

fun-fair, and you have different types of coins available to you in infinite quantities. The

value of each coin is already given. Can you determine the number of ways of making

change for a particular number of units using the given types of coins?

For example, if you have 4 types of coins, and the value of each type is given

as 8, 3, 1, 2 respectively, you can make change for 3 units in three ways: {1, 1, 1},

{1, 2}, and {3}.

► Use the idea of solution from the previous problem.

E-OLYMP 9615. Frobenius coin problem Given two coins of denominations x

and y respectively. Find the largest amount S that cannot be obtained using these two

coins (assuming infinite supply of coins) and the total number T of such non obtainable

amounts. If no such value exists print “NA”.

► If GCD(x, y) > 1, then there are an infinite number of sums that cannot be paid

with two denominations. In this case, print “NA”.

The largest sum S that cannot be paid with denominations x and y is x * y – x – y.

The total number T of sums that are not representable by the available coins is (x –

1) * (y – 1) / 2.

Consider the sample x = 2, y = 5. In ths case

S = 2 * 5 – 2 – 5 = 3,

T = 1 * 4 / 2 = 2

The non-representable sumss are 1 and 3 (two sums).

Problems with parentheses

E-OLYMP 1551. Correcting parenthesization Given a string of parentheses, we

must turn it into a well formed string by changing as few characters as possible (we

cannot delete or insert characters).

There are three kinds of parentheses: regular (), brackets [] and curly brackets {}.

Each pair has an opening ('(', '[' and '{' respectively) and a closing (')', ']' and '}')

character.

A well formed string of parentheses is defined by the following rules:

 The empty string is well formed.

 If s is a well formed string, (s), [s] and {s} are well formed strings.

 If s and t are well formed strings, the concatenation st is a well formed

string.

As examples, "([{}])", "" and "(){}[]" are well formed strings and "([}]", "([)]" and

"{" are malformed strings.

For the given string of parentheses find the minimum number of characters that

need to be changed to make it into a well formed string.

https://www.e-olymp.com/en/problems/9614
https://www.e-olymp.com/en/problems/9615
https://www.e-olymp.com/en/problems/1551

► Let f(i, j) be the smallest number of characters that can be changed so that the

substring sisi+1…sj-1sj becomes correct. Then the following statements hold:

1. f(i, j) = 0 for i > j, since in this case the substring will be empty.

2. f(i, j) = f(i + 1, j – 1) + enc(si ,sj). Make si to be the opening parenthesis and sj to

be the corresponding closing parenthesis. Further, recursively consider the substring

si+1…sj-1.

si+1…sj-1()

i ji+1 j-1

Function enc(si ,sj) returns:

а) 0, if the characters si and sj are matching opening and closing parentheses;

б) 2, if si is a closing parenthesis and sj is an opening parenthesis;

в) 1 otherwise. In this case, it is enough to change one of the symbols si or sj so

that they form the correct pair of parenthesis;

3. f(i, j) =
jki

min (f(i, k) + f(k + 1, j)). Consider the sequence sisi+1…sj-1sj as a

sequence of two regular parenthesis structures: si…sk и sk+1…sj. The length of a

substring si…sk must be even, hence k takes the values i + 1, i + 3, …, j – 2.

sk+1…sj

k+1 j

si…sk

ki

f(i,k) f(k+1,j)

Consider the first line from the sample.

f(0, 7) = f(0, 3) + f(4, 7) = (2 + f(1, 2)) + (0 + f(5, 6)) = (2 + 0) + (0 + 1) = 3

] () [((()

f(0,3) = 2

0 1 2 3 4 5 6 7

f(4,7) = 1

2 + f(1,2)

=

0

=

f(5,6) = 1

=

Store the values of f(i, j) in m[i][j]. Read the input string into s.

int m[51][51], res;

string s;

Implementation of the function enc(c, d).

int enc(char c, char d)

{

 string p = "([{)]}";

Function returns 2 if c is a closing parenthesis and d is an opening parenthesis.

 if (p.find(c) / 3 > 0 && p.find(d) / 3 < 1) return 2;

Function returns 0, if c and d are the corresponding parentheses. If they are not in

the correct order, the function will return the value 2 above.

 if (p.find(c) % 3 == p.find(d) % 3 && c != d) return 0;

In all other cases, return 1.

 return 1;

}

Function f(i, j) returns the smallest number of characters that can be changed so

that the substring sisi+1…sj-1sj becomes valid.

int f(int i, int j)

{

 if (i > j) return 0;

 if (m[i][j] != -1) return m[i][j];

 int r = f(i+1,j-1) + enc(s[i],s[j]);

 for(int k = i + 1; k < j; k += 2)

 r = min(r,f(i,k) + f(k+1,j));

 return m[i][j] = r;

}

The main part of the program. Process multiple test cases.

while(cin >> s)

{

 memset(m,-1,sizeof(m));

The answer to the problem is the value f(0, |s| – 1), where s is the input string.

 res = f(0, s.size() - 1);

 cout << res << endl;

}

E-OLYMP 7447. Cut a string You are given a string s. It is allowed to take any

two same neighbor symbols of this string and delete them. This operation you can do

while possible. At the beginning you can choose any symbols from string and delete

them. Determine the minimum number of symbols you can delete at the beginning, so

that you get the empty string after performing allowed operations.

► Let dp[l][r] = f(l, r) be the minimum number of characters that should be

removed from the substring sl..sr, so that later, as a result of applying operations

(removing identical adjacent characters), an empty string can be obtained. Then:

 f(l, r) = 0, if l > r;

 f(l, l) = 1, single character should be removed at the beginning;

https://www.e-olymp.com/en/problems/7447

 f(l, r) = f(l + 1, r – 1), if s[l] = s[r]. If the leftmost and the rightmost

characters are the same, then the inner part should be deleted, after which

these characters become adjacent and they can be deleted by applying the

operation;

sl sr

f(l + 1, r - 1)
f(l, r)

l l + 1 r - 1 r

sl = sr

 f(l, r) = 1 + f(l + 1, r), if we remove the first character;

 f(l, r) = 1 + f(l, r – 1), if we remove the last character;

However, the last two conditions can be included in the following: to solve the

problem on the segment [l; r] let’s solve the problem separately on segments [l; i] and [i

+ 1; r] (l ≤ i < r) and take the smallest result:

f(l, r) =),1(),(min
1

rifilf
ri

f (i + 1, r)f (l, i)

l i ri + 1

f(l, r)

For example, the case of removing the first character from the string is equivalent

to i = l (then f(l, l) = 1), and the case of removing the last character is equivalent to i = r

– 1 (f (r, r) = 1).

f (l + 1, r)

l rl + 1

f(l, r)

f(l, l)

f (l, r - 1)

rr - 1l

f(l, r)

f(r, r)

The answer to the problem is dp[0][n – 1] = f(0, n – 1), where n is the length of the

input string.

Consider the sample given in the problem statement. We have:

f(0, 7) = f(0, 2) + f(3, 7) = 1 + 1 = 2

a b a c d e e c

f(0,2) = 1

0 1 2 3 4 5 6 7

f(3,7) = 1

f(1,1)

=

1

=

f(4,6) = 1

=

f(4,4) + f(5,6)

=

1

=

0

=

Declare the arrays.

#define MAX 101

#define INF 0x3F3F3F3F

int dp[MAX][MAX];

string s;

Let f(l, r) be the solution of the problem on the segment [l; r].

int f(int l, int r)

{

 if (l > r) return 0;

 if (l == r) return 1;

 if (dp[l][r] != INF) return dp[l][r];

 int &res = dp[l][r];

 if (s[l] == s[r])

 res = min(res, f(l + 1, r - 1));

 for (int i = l; i < r; i++)

 res = min(res, f(l, i) + f(i + 1, r));

 return res;

}

The main part of the program. Read the line.

cin >> s;

memset(dp,0x3F,sizeof(dp));

Compute and print the answer f(0, n – 1), where n is the length of string s.

printf("%d\n",f(0, s.size() - 1));

E-OLYMP 5205. Parentheses The pattern is given. It consists of parentheses and

question marks.

Find in how many ways one can replace the question marks with parentheses to

obtain the correct bracket sequence.

► Let f(n, k) be the number of correct parentheses starting at position n, if k open

parentheses have already been encountered. Then the answer to the problem will be the

value f(0, 0). Store the value of f(n, k) in dp[n][k].

Let s be the input string. Then:

 if s[n] = ‘(‘, then f(n, k) = f(n + 1, k + 1). There will be k open parentheses

before position n, if there will be k + 1 open parenthesis before position n +

1;

 if s[n] = ‘)‘, then f(n, k) = f(n + 1, k – 1) . There will be k open parentheses

before position n, if there will be k – 1 open parenthesis before position n +

1;

 if s[n] = ‘?‘, then at the n-th place one can put both opening and closing

parentheses. Therefore f(n, k) = (f(n + 1, k + 1) + f(n + 1, k – 1)) % 301907;

It remains to write down the conditions for the base case of dynamic:

https://www.e-olymp.com/en/problems/5205

 if at some stage becomes k < 0, then the number of closed brackets turns out

to be more than the number of open ones, so we exit this branch of

calculations, return 0;

 if we have reached the end of the string s0s1 … sn-1 (index numbering starts

from zero), then dp[n][k] = 1 if only k = 0 (when the number of open and

closed brackets is the same). For k > 0, set dp[n][k] = 0.

? ? ? ?

f(0,0)

(? ? ?

f(1,1)

) ? ? ?

f(1,-1) = 0

((? ?

f(2,2)

() ? ?

f(2,0)

(((?

f(3,3) = 0

(() ?

f(3,1) = 1

() (?

f(3,1) = 1

()) ?

f(3,-1) = 0

...

...

Declare the arrays.

#define MAX 2010

char s[MAX];

int dp[MAX][MAX];

int len;

Implement the function f(n, k).

int f(int n, int k)

{

 if(k < 0) return 0;

 if(n == len) return (k == 0);

 if(dp[n][k] != -1) return dp[n][k];

 if(s[n] == '(') return dp[n][k] = f(n+1, k+1);

 if(s[n] == ')') return dp[n][k] = f(n+1, k-1);

 return dp[n][k] = (f(n+1, k-1) + f(n+1, k+1)) % 301907;

}

The main part of the program. Read the line and print the number of correct

bracket sequences.

gets(s); len = strlen(s);

memset(dp,-1,sizeof(dp));

printf("%d\n",f(0,0));

E-OLYMP 401. Sharik’s letter from Prostokvashino Find the correctly formed

bracket expression of length n and depth d.

► Any non-empty bracket expression A of length n and depth no greater than d

can be expressed as (X)Y, where X and Y some expressions, possibly empty. Let the

https://www.e-olymp.com/en/problems/401

length of expression (X) equals to k. Then the length of X is k – 2, and the length of Y is

n – k. Obviously that 2 ≤ k ≤ n and k can take only even values. When k = 2 the

expression X is empty, and when k = n the expression Y is empty. Note also, since the

depth of expression A is not greater than d, then the depth of X is not greater than d – 1,

and the depth of Y is not greater than d.

(X) Y

k - 2

k n - k

Denote f(n, d) the number of ways to get a well-formed bracket expression of

length n and depth not greater than d. Then we have f(k – 2, d – 1) ways to represent the

expression X and f(n – k, d) ways to represent the expression Y. Using the

multiplication rule we can say that for a fixed k the expression (X)Y can be represented

in f(k – 2, d – 1) * f(n – k, d) ways. So

f(n, d) =

even isk
2

,1,2
nk

dknfdkf

Since the problem requires to find the number of ways to get a well-formed bracket

expression of length n and depth exactly d, then the answer will g(n, d) = f(n, d) – f(n, d

– 1).

Separately you must handle the following cases:

 If d > n / 2, then g(n, d) = 0;

 If d = n / 2, then we have a unique bracket expression (((…))), so g(n, n / 2)

= 1;

 If d = 1, then we have a unique bracket expression ()()…()(), so g(n, 1) = 1;

f(2, 2) =

2

2,21,2
k

kfkf = f(0, 1) * f(0, 2) = 1* 1 = 1. If one can represent the

bracket expression of length 2 and depth not greater than 2 as (X)Y, then the factor f(0,

1) corresponds to the number of ways to represent X, and the factor f(0, 2) corresponds

to the number of ways to represent Y. These factors equal to one, and X and Y

corresponds an empty expression. So for f(2, 2) corresponds only one expression ().

f(4, 2) =

4,2

2,41,2
k

kfkf =

f(0, 1) * f(2, 2) + f(2, 1) * f(0, 2) = 1 * 1 + 1 * 1 = 2

The summand f(0, 1) * f(2, 2) corresponds to expression ()(), and the summand f(2,

1) * f(0, 2) corresponds to expression (()).

f(6, 2) =

6,4,2

2,61,2
k

kfkf =

f(0, 1) * f(4, 2) + f(2, 1) * f(2, 2) + f(4, 1) * f(0, 2) = 1 * 2 + 1 * 1 + 1 * 1 = 4

Summand The corresponding bracket

expressions

f(0, 1) * f(4, 2) ()()(), ()(())

f(2, 1) * f(2, 2) (())()

f(4, 1) * f(0, 2) (()())

The number of correctly formed bracket expressions of length 6 and of depth

exactly 2 equals to

g(6, 2) = f(6, 2) – f(6, 1) = 4 – 1 = 3

They are: ()(()),(())(),(()()).

The value f(n, d) we shall keep in array of long numbers ff.

BigInteger ff[301][151];

The function f computes the value f(n, d). Separately handle the cases when n < 0

or d < 0 (the function f returns 0). If n = 0, then f(0, d) is assumed to be equal to 1 for

any d (this is the case when either X or Y is empty).

BigInteger f(long long n, long long d)

{

 long long k;

 BigInteger &s = ff[n][d];

 if ((n < 0) || (d < 0)) return 0;

 if (!n) return ff[n][d] = BigInteger(1);

 if (ff[n][d] >= 0) return ff[n][d];

 for(s = 0, k = 2; k <= n; k += 2)

 s = s + f(k - 2,d - 1) * f(n - k,d);

 return s;

}

The main part of the program. First handle the special cases.

memset(ff,-1,sizeof(ff));

while(scanf("%lld %lld",&n,&d) == 2)

{

 if (d > n / 2) res = BigInteger(0); else

 if ((d == n / 2) || (d == 1)) res = BigInteger(1); else

 res = f(n,d) - f(n,d-1);

 res.print();printf("\n");

}

Java realization

import java.util.*;

import java.math.*;

public class Main

{

 static BigInteger dp[][];

 static BigInteger f(int n, int d)

 {

 BigInteger s = BigInteger.ZERO;

 if ((n < 0) || (d < 0)) return BigInteger.ZERO;

 if (n == 0) return dp[n][d] = BigInteger.ONE;

 if (dp[n][d].compareTo(BigInteger.ZERO) >= 0) return dp[n][d];

 for(int k = 2; k <= n; k += 2)

 s = s.add(f(k - 2,d - 1).multiply(f(n - k,d)));

 return dp[n][d] = s;

 }

 public static void main(String[] args)

 {

 Scanner con = new Scanner(System.in);

 while(con.hasNextInt())

 {

 int n = con.nextInt();

 int d = con.nextInt();

 dp = new BigInteger[n+1][d+1];

 for(int i = 0; i <= n; i++)

 for(int j = 0; j <= d; j++)

 dp[i][j] = new BigInteger("-1");

 BigInteger res = new BigInteger("0");

 if (d > n / 2) res = BigInteger.ZERO; else

 if ((d == n / 2) || (d == 1)) res = BigInteger.ONE; else

 res = f(n,d).subtract(f(n,d-1));

 System.out.println(res);

 }

 con.close();

 }

}

Problems with palindromes

E-OLYMP 470. Super palindromes The palindrome is a string longer than one

character, that reads the same right to left and left to right. The super palindrome is a

string that can be represented as a concatenation of one or more palindromes. Given the

string s. Find the number of substrings in s that are super palindromes.

► Let s be the input string. The substring si … sj is a palindrome, if:

 i ≥ j (substring is empty or consists of one character);

 si = sj and si+1…sj-1 is a palindrome;

Let function IsPal(i, j) returns 1, if si…sj is a palindrome, and 0 otherwise.

Memoize the values of IsPal(i, j) in pal[i][j].

a b c b a

1 2 3 4 5

IsPal(2, 4)

s1 = s5

IsPal(1, 5)

A string is a super palindrome if it can be represented as the concatenation of one

or more palindromes. For example, the following strings are superpalindromes:

https://www.e-olymp.com/en/problems/470

x x a b b a y t y

a b c b a a a a b a

Let dp[i][j] = 1, if substring si…sj (i < j) is a super palindrome and dp[i][j] = 0

otherwise. Iterate over the pairs (i, j) for 0 ≤ i < j < n and if the substring si…sj is a

palindrome, then it is a super palindrome, set dp[i][j] = 1. Note that dp[i][j] = 0 for i ≥ j.

A word of one letter is not considered a palindrome, therefore, as a special case, we

have dp[i][i] = 0.

For each pair (i, j), iterate over all possible values of k (i < k < j – 1) and if si…sk

and sk+1…sj are super palindromes (they consist of more than one symbol due to the

restriction on k), then si…sj is a super palindrome.

a b a b c

1 2 3 4 5

dp[1][3] = 1

c b

6 7

dp[4][7] = 1

dp[1][7] = 1

It remains to compute the number of pairs (i, j) for which i < j and dp[i][j] = 1.

This number is the answer.

There are 5 substrings for aaaba, which are super palindromes.

a a a b a

a a a b a

a a a b a

a a a b a

a a a b a

Declare the arrays.

#define MAX 1010

char s[MAX];

int dp[MAX][MAX];

int pal[MAX][MAX];

Implement the recursive function IsPal(i, j), which returns 1 if si…sj is a

palindrome. Otherwise, the function returns 0. The substring si … sj is a palindrome if si

= sj and si+1…sj-1 is a palindrome. Store the values IsPal(i, j) in pal[i][j].

int IsPal(int i, int j)

{

 if (i >= j) return pal[i][j] = 1;

 if (pal[i][j] != -1) return pal[i][j];

 return pal[i][j] = (s[i] == s[j]) && IsPal(i+1,j-1);

}

The main part of the program. Read the input string.

gets(s); n = strlen(s);

memset(dp,0,sizeof(dp));

memset(pal,-1,sizeof(pal));

Iterate over the pairs (i, i + len) in ascending order of interval lengths.

for(len = 1; len < n; len++)

for(i = 0; i + len < n; i++)

{

 j = i + len;

Substring si…sj contains more than one character. If it is a palindrome, then it is

also a super palindrome.

 if (IsPal(i,j))

 {

 dp[i][j] = 1;

 continue;

 }

If si…sk and sk+1…sj are super palindromes, then si…sj is a super palindrome.

 for(k = i + 1; k < j - 1; k++)

 if(dp[i][k] && dp[k + 1][j])

 {

 dp[i][j] = 1;

 break;

 }

}

Count the number of super palindromes.

res = 0;

for(i = 0; i < n; i++)

for(j = i+1; j < n; j++)

 res += dp[i][j];

Print the answer.

printf("%d\n",res);

Algorithm realization – recursive

Declare the input string s and arrays.

#define MAX 1010

char s[MAX];

int dp[MAX][MAX], pal[MAX][MAX];

Implement the recursive function IsPal(i, j), which returns 1 if si…sj is a

palindrome. Otherwise, the function returns 0. The substring si … sj is a palindrome if si

= sj and si+1…sj-1 is a palindrome. Store the values IsPal(i, j) in pal[i][j].

int IsPal(int i, int j)

{

 if (i >= j) return pal[i][j] = 1;

 if (pal[i][j] != -1) return pal[i][j];

 return pal[i][j] = (s[i] == s[j]) && IsPal(i+1,j-1);

}

Function f(i, j) returns 1, if si…sj is a super palindrome.

int f(int i, int j)

{

Super palindrome must contain more than one symbol.

 if (i == j) return dp[i][j] = 0;

If f(i, j) is already computed, return its value.

 if (dp[i][j] != -1) return dp[i][j];

If a substring si…sj (i < j) is a palindrome, then it is also a super palindrome.

 if (IsPal(i,j)) return dp[i][j] = 1;

If si…sk (i < k) is a palindrome, and sk+1…sj (k + 1 < j) is a super palindrome, then

si…sj is a super palindrome.

 for(int k = i + 1; k < j - 1; k++)

 if(IsPal(i,k) && f(k + 1,j)) return dp[i][j] = 1;

If none of the above conditions is satisfied, then si…sj is not a super palindrome.

 return dp[i][j] = 0;

}

The main part of the program. Read the input string s. Initialize the dp and pal

arrays.

gets(s); n = strlen(s);

memset(dp,-1,sizeof(dp));

memset(pal,-1,sizeof(pal));

In the variable res, count the number of super palindromes.

res = 0;

for(i = 0; i < n; i++)

for(j = i + 1; j < n; j++)

 res += f(i,j);

Print the answer.

printf("%d\n",res);

E-OLYMP 873. Palindromes Non-empty string containing a certain word is

called palindrome if it reads the same from left to right and from right to left.

Let we are given a word s, consisting of n uppercase letters of Latin alphabet.

Deleting from the word a certain set of characters, you can get the palindrome string.

Find the number of ways to delete from the word some (possibly empty) set of symbols

so that the resulting string is a palindrome. Ways in different order of deleting

characters are considered equal.

► Let dp[i][j] stores the number of palindromes that can be obtained from the

substring si…sj by deleting letters. Then dp[i][i] = 1, since a word of one character is a

palindrome.

Let si = sj = X, substring si…sj has the form XPX. Here P denotes the substring

si+1…sj-1. Split the palindromes of the string XPX into non-overlapping groups:

 include the left X and do not include the right X. The number of

palindromes equals to the number of palindromes in string XP minus the

number of palindromes in P, that equals to dp[i][j – 1] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i][j-1]

X

j

 include the right X and do not include the left X. The number of

palindromes equals to the number of palindromes in string PX minus the

number of palindromes in P, that equals to dp[i + 1][j] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i+1][j]

X

j

 the palindromes of the string P. Their number equals to dp[i + 1][j – 1].

However, with each palindrome Q of string P, we can construct the XQX

palindrome. The number of palindromes of the form XQX will also be dp[i

+ 1][j – 1].

PX

i j – 1i + 1

dp[i+1][j-1]

X

j

 palindrome XX (one palindrome).

X X

The total number of palindromes for the case si = sj is

https://www.e-olymp.com/en/problems/873

(dp[i][j – 1] – dp[i + 1][j – 1]) +

(dp[i + 1][j] – dp[i + 1][j – 1]) +

2 * dp[i + 1][j – 1] +

1

= dp[i][j – 1] + dp[i + 1][j] + 1.

Let si ≠ sj, substring si…sj has the form XPY (si = X, sj = Y). Split the palindromes

of the string XPY into non-overlapping groups:

 include the symbol X and do not include the symbol Y. The number of

palindromes equals to the number of palindromes in string XP minus the

number of palindromes in P, that equals to dp[i][j – 1] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i][j-1]

Y

j

 include the symbol Y and do not include symbol X. The number of

palindromes equals to the number of palindromes in string PY minus the

number of palindromes in P, that equals to dp[i + 1][j] – dp[i + 1][j – 1];

PX

i j – 1i + 1

dp[i+1][j-1]

dp[i+1][j]

Y

j

 palindromes of the string P. Their number is dp[i + 1][j – 1].

PX

i j – 1i + 1

dp[i+1][j-1]

Y

j

The total number of palindromes for the case si ≠ sj is

 (dp[i][j – 1] – dp[i + 1][j – 1]) +

(dp[i + 1][j] – dp[i + 1][j – 1]) +

dp[i + 1][j – 1]

= dp[i][j – 1] + dp[i + 1][j] – dp[i + 1][j – 1].

By deleting the letters from the string aba, you can get 5 palindromes.

a b a a b a a b a

a b a a b a

Consider the string abab = s0s1s2s3. Since s0 ≠ s3, the substring s0…s3 has the form

XPY. Hence dp[0][3] =

(dp[0][2] – dp[1][2]) +

(dp[1][3] – dp[1][2]) +

dp[1][2] =

= dp[0][2] + dp[1][3] – dp[1][2] = 5 + 5 – 2 = 8.

a b a b

a b a b a b a b

b

a

a

a a

a b a

b

b b

b a b

0 1 2 3

0 1 2 1 2 31 2

dp[0][2] - dp[1][2] = 3

dp[1][2] = 2

dp[1][3] - dp[1][2] = 3

Consider the string abcba = s0s1s2s3s4. Since s0 = s4, the substring s0…s4 has the

form XPX. Hence dp[0][4] =

(dp[0][3] – dp[1][3]) +

(dp[1][4] – dp[1][3]) +

2 * dp[1][3] +

1 =

= dp[0][3] + dp[1][4] + 1 = 6 + 6 + 1 = 13.

a b c b

a b c b c b c

0 1 2 3

0 1 2 1 2 31 2

a

4

b

3

b

3

a

4

b

dp[1][3] = 5dp[0][3] - dp[1][3] = 1 dp[1][4] - dp[1][3] = 1

b c ba a

a a

Store the input string in the array s. Declare an array dp.

#define MAX 65

char s[MAX];

long long dp[MAX][MAX];

Read the input string s. Fill dp[i][i] = 1.

gets(s); n = strlen(s);

memset(dp,0,sizeof(dp));

for(i = 0; i < n; i++) dp[i][i] = 1;

Iterate over the lengths of the substrings len and their starting positions i.

for(len = 1; len < n; len++)

for(i = 0; i + len < n; i++)

{

 j = i + len;

For each such substring si…sj compute the value dp[i][j], the number of

palindromes that can be obtained from it by removing characters. Since the substrings

si…sj are iterated in increasing order of their lengths, the dp values for all subsegments

of shorter length have already been calculated.

 if (s[i] == s[j])

 dp[i][j] = dp[i+1][j] + dp[i][j-1] + 1;

 else

 dp[i][j] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1];

}

Print the answer.

printf("%lld\n",dp[0][n-1]);

Algorithm realization – recursion

#include <stdio.h>

#include <string.h>

#define MAX 61

Store the input string in the array s. Declare an array dp.

char s[MAX];

long long dp[MAX][MAX];

int i, j, len, n;

long long f(int i, int j)

{

If i > j, there is no palindromes.

 if (i > j) return 0;

A word of one character is a palindrome, set dp[i][i] = 1.

 if (i == j) return dp[i][j] = 1;

If the value of dp[i][j] is already computed, return it.

 if (dp[i][j] != -1) return dp[i][j];

Compute the value of dp[i][j] depending on whether the symbols si and sj are the

same.

 if (s[i] == s[j])

 dp[i][j] = f(i + 1, j) + f(i, j - 1) + 1;

 else

 dp[i][j] = f(i + 1, j) + f(i, j - 1) - f(i + 1, j - 1);

 return dp[i][j];

}

int main(void)

{

The main part of the program. Read the input string s. Initialize array dp.

 gets(s); n = strlen(s);

 memset(dp, -1, sizeof(dp));

Print the answer.

 printf("%lld\n", f(0, n - 1));

 return 0;

}

