
Introduction 
 

Purpose: Learn the design and analysis of algorithms 

 

Definition of Algorithm: 

 A precise statement to solve a problem on a computer; 

 A sequence of definite instructions to do a certain job; 

 

Characteristics of Algorithms and Operations: 

 Definiteness of each operation (i.e., clarity, unambiguity, single meaning); 

 Effectiveness; 

 Termination in a finite amount of time; 

 An algorithm has zero or more input, one or more output; 

 

Functions and Procedures: 

 Function is a named section of a program that can be called by other section 

of a program and that return one output. 

 Procedure is a named section of a program that does not return a value.  

 

Recursion: 

A recursive algorithm is an algorithm that calls itself on “smaller” input (smaller in 

size or values or both). 

 

A recursive function consists of two types of cases: 

 a base case(s) 

 a recursive case 

 

The base case is a small problem  

 the solution to this problem should not be recursive, so that the function is 

guaranteed to terminate; 

 there can be more than one base case; 

 

The recursive case defines the problem in terms of a smaller problem of the same 

type 

 the recursive case includes a recursive function call 

 there can be more than one recursive case 

 

From the definition of factorial we can conclude that  

n! = (1 * 2 * 3 * … * (n – 1)) * n = (n – 1)! * n 

Or if we denoted f(n) = n! then f(n) = f(n – 1) * n. This is called recursive case. 

We continue the recursive process till n = 0, when 0! = 1. So f(0) = 1. This is called the 

base case. 
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int fact(int n) 

{ 

  if (n == 0) return 1; 

  return fact(n-1) * n; 

} 

 

Design of Algorithms: 

- Devising a method, using standard techniques such as the ones covered in this 

course: 

 Divide and conquer 

 The greedy method 

 Dynamic programming 

 Graph traversal 

 Backtracking 

 Branch and bound 

- Expressing the algorithm (in a pseudo language, flowchart, high-level 

programming language); 

- Validating the algorithm (proof of correctness); 

 

Analysis: 

Determination of time and space requirements of the algorithm; 

 

Implementation and Program Testing: 

Solving problems at e-olymp.com 

 

Analysis of Algorithms: 

Time complexity T(n): number of operations in the algorithm, as a function of the 

input size; 

Space complexity S(n): number of memory words needed by the algorithm; 

 

Since memory has become very cheap and abundant, we rarely care about space 

complexity. Time, however, is always a premium even if computers are always 

increasing in speed. 

 



Since speed slows down for very large input sizes, the time estimate can focus 

more on large input sizes 𝑛, and we thus should be more concerned about the “order of 

growth” of the time function T(n), or as typically called, the asymptotic behavior of the 

T(n). Since computers vary in speed from model to model and from generation to 

generation, and the variation is by a constant factor (with respect to input size), we can 

(and should) ignore constant factors in time estimations, and focus again on the order of 

growth rather than the precise time in micro/nano-seconds. 

 

Asymptotics and Big-O Notation 
 

Big-O notation 

Definition. Let f(n) and g(n) be two functions of n (n is usually the input size in 

algorithm analysis). We say that  

f(n) = O(g(n)) 

if ∃ 𝑛0 ∈ N and constant c > 0 such that |f(n)| ≤ c|g(n)| ∀n  ≥ n0. 

O-notation gives an upper bound for a function to within a constant factor. 

 
Example. 3n + 1 = O(n2) since 3𝑛 + 1 ≤ 3n2 ∀𝑛 ≥ 2. n0 = 2, c = 3.  

Example. 3n + 6 = O(n) because 3𝑛 + 6 ≤ 4n ∀ 𝑛 ≥ 6. n0 = 6, c = 4.  

Example. an + b = O(nk) for any a > 0, k ≥ 1.  

 

Big Omega (Ω) 

Definition. Let f(n) and g(n) as above. We say that 

f(n) = Ω(g(n)) 

if ∃𝑛0 ∈ N and constant c > 0 such that |f(n)| ≥ c|g(n)| ∀n  ≥ n0. 

Ω-notation gives a lower bound for a function to within a constant factor. 

 



Example. 
3

2n
 = Ω(n) because 2

3

1
n  ≥ n  ∀𝑛 ≥ 3. n0 = 3, c = 1.  

Example. 3n  + 6 = Ω(n) because 3n  + 6 ≥ 3n  ∀𝑛 ≥ 1. n0 = 1, c = 3.  

Example. an10 + b = Ω(nk) for any a > 0, 0 ≤ k ≤ 10.  

 
Big Theta (Θ) 

Definition. Let f(n) and g(n) as above. We say that 

f(n) = Θ(g(n)) 

if f(n) = O(g(n)) and f(n) = Ω(g(n)). That is, 

if ∃𝑛0 ∈ N and two positive constants c1 > 0 and c2 > 0 such that  

c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| ∀n  ≥ n0 

Θ-notation bounds a function to within constant factors. 

 
Example. 3n + 6 = Θ(n) because 3n + 6 = O(n) and 3n + 6 = Ω(n). 
Example. 3n2 + 2n – 6 = Θ(n2) because n2 ≤ 3n2 + 2n – 6 ≤ 100n2 (c1 = 1, c2 = 100) 

starting from n  ≥ n0 = 10. 
 

Theorem. Let f(n) = amnm + am-1n
m-1 + … + a1n + a0 be a polynomial (in n) of 

degree m, where m is a positive constant integer, and am, am-1, … , a1, a0 are constants. 

Then f(n) = O(nm). 

Proof. |f(n)| ≤ |am|nm + |am-1|n
m-1 + … + |a1|n + |a0| ≤ 

≤ |am|nm + |am-1|n
m + … + |a1|n

m + |a0| n
m ≤ 

≤ (|am| + |am-1| + … + |a1| + |a0|) n
m ≤ cnm, 

where c = |am| + |am-1| + … + |a1| + |a0| and n ≥ 1. Therefore, by definition, f(n) = 

O(nm). 

 

In general, if the time T(n) is a sum of a constant number of terms, you can keep 

the largest-order term and drop all the other terms, and drop the constant factor of the 

largest order term, to get a simple Big-O form for T(n). 

Example. If T(n) = nnnnn log73 7.2  , then T(n) =  7.2nO . 

 

Master theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let 

T(n) be defined on the nonnegative integers by the recurrence 

T(n) = a * T(n / b) + f(n), 

where we interpret n / b to mean either  bn /  or  bn / . Then T(n) can be bounded 

asymptotically as follows: 



1. If f(n) =  abnO
log  for some constant ɛ > 0, then T(n) = Θ  abn

log . 

2. If f(n) = Θ  abn
log , then T(n) = Θ  nn

ab log
log . 

3. If f(n) = Ω  abn
log  for some constant ɛ > 0, and if a * f(n / b) ≤ c * f(n) for 

some constant c < 1 and all sufficiently large n, then T(n) = Θ(f(n)). 

 

Simplified form of Master theorem. To apply the master’s theorem, we must 

calculate the value of p(n) = abn
log . 

1. If f(n) < p(n), then T(n) = Θ  abn
log  = Θ(p(n)). 

2. If f(n) = p(n), then T(n) = Θ  nn
ab log

log  = Θ  nnp log)( . 

3. If f(n) > p(n), then T(n) = Θ(f(n)). 

 

Example. T(n) = 9T(n / 3) + n. 

Here a = 9, b = 3, f(n) = n. p(n) = abn
log  = 9log3n  = n2. 

f(n) < p(n) because n < n2, so T(n) = Θ(n2). 

 

We have abn
log  = 9log3n  = Θ(n2). Since f(n) = O( 9log3n ), where ɛ = 1, we can apply 

case 1 of the master theorem and conclude that the solution is T(n) = Θ(n2). 

 

Example. T(n) = T(2n / 3) + 1. 

Here a = 1, b = 3 / 2, f (n) = 1, p(n) = abn
log  = 1log 2/3n  = n0 = 1. 

f(n) = p(n) because 1 = 1, so T(n) = Θ(log n). 

 

We have abn
log  = 1log 2/3n  = n0 = Θ(1). Case 2 applies, since f(n) = Θ ( abn

log ) = Θ(1), 

and thus the solution to the recurrence is T(n) = Θ(log n). 

 

Example. T(n) = 3T(n / 4) + nlogn. 

Here a = 3, b = 4, f(n) = nlogn, p(n) = abn
log  = 3log4n  = n0.793. 

f(n) > p(n) because nlogn > n0.793, so T(n) = Θ(nlogn). 

 

We have abn
log  = 3log4n  = Θ(n0.793). Since f(n) = Ω  3log4n , where ɛ ≈ 0.2, case 3 

applies if we can show that the regularity condition holds for f(n). For sufficiently large 

n, a * f (n / b) = 3(n / 4) lg(n / 4) ≤ (3 / 4) nlgn = c * f(n) for c = 3 / 4. Consequently, by 

case 3, the solution to the recurrence is T(n) = Θ(nlogn). 

 

The master theorem cannot be used if: 

 T(n) is not monotone, for example T(n) = sin n; 

 f(n) is not polynomial, for example f(n) = 2n; 

 a is not a constant, for example a = 2n; 

 

Problems. Solve the recurrence relations: 

T(n) = 4T(n / 2) + n; 

T(n) = 4T(n / 2) + n2; 

T(n) = 4T(n / 2) + n3; 



T(n) = 2T(n / 4) + n ; 

T(n) = 6T(n / 3) + n; 

T(n) = 6T(n / 3) + n2; 

T(n) = 6T(n / 3) + nn ; 

T(n) = 9T(n / 3) + n2; 

 

Example. Master theorem solver: 
https://www.nayuki.io/page/master-theorem-solver-javascript 

 

E-OLYMP 2860. Sum of integers on the interval Find the sum of all integers 

from a to b. Integers are no more than 109 by absolute value. 

► Let's solve the problem with for loop: 

 
res = 0; 

for(i = a; i <= b; i++) 

  res = res + i; 

 

Number of iterations is proportional to amount of numbers on the interval [a..b]. 

Let n = b – a + 1 be the size of the interval. To run a program, we must make n 

iterations in the for loop. For example, if n = 109, we must make 109 iterations. Number 

of operations increase linearly with the value of n. So time complexity is T(n) = O(n). 

 

The speed of nowadays computers is approximately 109 operations per 2 seconds. 

So we can also estimate the running time of our programs in seconds. 

 

Time limit for the problem 2860 (Sum of integers on the interval) is 1 second. So 

for loop solution will give Time Limit Exceeded (TLE) on some test cases. We must 

find an algorithm faster than O(n). 

 

We can notice that numbers from a to b form an arithmetic progression with 

difference d = 1. And their sum according to the formula equals to 

 1
2




ab
ba

 

Solution to the problem can be just one line: 
 

res = (a + b) * (b - a + 1) / 2; 

 

This formula has 5 arithmetic operations regardless the value of n. So complexity 

of this solution is O(1) and it is accepted in 1 second. 

 

Example. Consider the next triple loop with complexity O(n3).  

time_t represents the system time and date as some sort of integer. Function 

time(0) or time(NULL) returns number of seconds since January 1, 1970.  

Change the value of n and estimate the running time of the program. 
 

#include <stdio.h> 

#include <ctime> 

https://www.nayuki.io/page/master-theorem-solver-javascript
https://www.e-olymp.com/en/problems/2860


 

int i, j, k, n; 

long long cnt; 

 

int main(void) 

{ 

  // Number of sec since January 1,1970 

  time_t start = time(0); 

  printf("Number of seconds started: %lld\n", start); 

 

  n = 1000; // 10^9 operations per 2 seconds, CORE i5 

  for (i = 1; i <= n; i++) 

  for (j = 1; j <= n; j++) 

  for (k = 1; k <= n; k++) 

    cnt++; 

  

  printf("Counter = %lld\n", cnt); 

  time_t finish = time(0); 

  printf("Number of seconds finished: %lld\n", finish); 

 

  printf("Running time of the program in seconds: %lld\n", finish - 

start); 

  return 0; 

} 

 

Using the function clock(), you can estimate the running time in milliseconds. The 

C library function clock(void) returns the number of clock ticks elapsed since the 

program was launched. To get the number of seconds used by the CPU, you will need to 

divide by CLOCKS_PER_SEC.  

Try to run the program with n = 1000 and n = 2000. 
 

#include <stdio.h> 

#include <ctime> 

 

int i, j, k, n; 

long long cnt; 

 

int main(void) 

{ 

  clock_t start = clock(); 

 

  n = 1000; 

  for (i = 1; i <= n; i++) 

  for (j = 1; j <= n; j++) 

  for (k = 1; k <= n; k++) 

    cnt++; 

  

  printf("Counter = %lld\n", cnt); 

  clock_t finish = clock(); 

  // now you can see running time milliseconds 

  printf("Running time of the program in seconds: %f\n", 

(float)(finish - start) / CLOCKS_PER_SEC); 

  return 0; 

} 

 



E-OLYMP 1616. Prime number? Check if the given number n is prime. The 

number is prime if it has no more than two divisors: 1 and the number itself. 

► If number n is composite, it has a divisor not greater than  n . To check if n is 

prime, we must check its divisibility by 2, 3, …,  n . Complexity  nO . 
 

int IsPrime(int n) 

{ 

  for (int i = 2; i <= sqrt(n); i++) 

    if (n % i == 0) return 0; 

  return 1; 

} 

 

E-OLYMP 8669. All divisors Find all divisors of positive integer n (n ≤ 109). 

► If d is a divisor of n, then n / d is also a divisor of n. Find divisors d such that 1 

≤ d ≤  n , and corresponding to them divisors n / d. Sort and print divisors. Be careful 

if d =  n , then n / d is the same divisor, do not print it twice. Complexity  nO . 

 

E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n), 

given by the formula:  

F(0) = 1,  

F(1) = 1,  

F(n) = F(n – 1) + F(n – 2) 

Given the value of n, print the n-th Fibonacci number. 

► First  let’s consider the direct implementation of recursion. 

f(4)

f(3)       +       f(2)

f(2)   +   f(1) f(1)   +   f(0)

f(1)   +   f(0)

f(2)   +   f(1)

f(1)   +   f(0)

f(3)+

f(5)

 
int f(int n) 

{ 

  if (n == 0) return 1; 

  if (n == 1) return 1; 

  return f(n - 1) + f(n - 2); 

} 

 

This solution has complexity O(2n) because execution tree has a form of binary 

tree, and complete binary tree has no more than 2n nodes. For n = 45 we must execute 

245 operations, that is very big for 1 second (time limit for this problem) 

 

We can notice that some calculations done multiple times. For example, after 

finding f(3), we can store this value in fib[3] (let’s declare integer array int fib[46]), 

and when again we need to find f(3), we can take this value out of fib[3] (and not to run 

https://www.e-olymp.com/en/problems/1616
https://www.e-olymp.com/en/problems/8669
https://www.e-olymp.com/en/problems/4730


all calculations again). This technique is called memoization. Complexity of recursion 

with memoization is O(n) because each value f(n) is calculated only once. 

f(4)

f(3)       +       f(2)

f(2)   +   f(1)

f(1)   +   f(0)

f(3)+

f(5)

mem

mem

 
#include <stdio.h> 

#include <string.h> 

  

int n, fib[46]; 

  

int f(int n) 

{ 

  // base case 

  if (n == 0) return 1; 

  if (n == 1) return 1; 

 

  // if the value fib[n] is ALREADY found, just return it 

  if (fib[n] != -1) return fib[n];  

 

  // if the value fib[n] is not found, calculate and memoize it 

  return fib[n] = f(n-1) + f(n - 2); 

} 

  

int main(void) 

{ 

  scanf("%d",&n); 

 

  // fib[i] = -1 means that this value is not calculated yet 

  memset(fib,-1,sizeof(fib)); 

 

  printf("%d\n",f(n)); 

  return 0; 

} 

 

Memoization of Fibonacci numbers can also be done with just one for loop, O(n) 

complexity: 

 
fib[0] = 1; fib[1] = 1; 

for (int i = 2; i < MAX; i++) 

  fib[i] = fib[i - 1] + fib[i - 2]; 

 

Let’s again look at Fibonacci recurrence and try to estimate its grows. 

F(n) = F(n – 1) + F(n – 2) 

Since F(n – 1) > F(n – 2), we have  

F(n) = F(n – 1) + F(n – 2) > F(n – 2) + F(n – 2) = 2 * F(n – 2) 

From this inequality we have: 



F(n) > 2 * F(n – 2) > 4 * F(n – 4) > 8 * F(n – 6) > … > 2n/2 = 
n

2  = 1.4142n 

 

From the other hand,  

F(n) = F(n – 1) + F(n – 2) < F(n – 1) + F(n – 1) = 2 * F(n – 1) 

From this inequality we have: 

F(n) < 2 * F(n – 1) < 4 * F(n – 2) < 8 * F(n – 3) < … < 2n 

So, Fibonacci numbers satisfy the inequality: 

1.4142n < F(n) < 2n 

 

Fibonacci numbers (Fn) are related to the golden ratio φ and to its conjugate   , 

which are given by the following Binet formula: 

φ =   ...61803.12/51  ,  

  =   ...61803.02/51  , 

Fn = 
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Since | | < 1, we have 5/|| n  < 5/1  < 1/2, so that the ith Fibonacci number Fn 

is equal to 5/n  rounded to the nearest integer. Thus, Fibonacci numbers grow 

exponentially, time complexity is O(1.61n). 

 

The greatest common divisor (gcd) of two integers is the largest positive integer 

that divides each of the integers. For example, gcd(8, 12) = 4. 

It is also known that gcd(0, x) = |x| (absolute value of x) because |x| is the biggest 

integer that divides 0 and x. For example, gcd(-6, 0) = 6, gcd(0, 5) = 5. 

To find gcd of two numbers, we can use iterative algorithm: subtract smaller 

number from the bigger one. When one of the numbers becomes 0, the other equals to 

gcd. For example, gcd(10, 24) = gcd(10, 14) = gcd(10, 4) = gcd(6, 4) = gcd(2, 4) = 

gcd(2, 2) = gcd(2, 0) = 2. 

If instead of “minus” operation we’ll use “mod” operation, calculations will go 

faster. 

a b

10 24

10 14

10 4

6 4

2 4

2 2

2 0

a b

2 9

2 7

2 5

2 3

2 1

1 1

1 0

9 mod 2 = 1

 
 



Greater Common Divisor: GCD(a, b) = 
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int gcd(int a, int b) 

{ 

  if (a == 0) return b; 

  if (b == 0) return a; 

  if (a >= b) return gcd(a % b, b); 

  return gcd(a, b % a); 

} 

 

Complexity  )(log2 baO  . 

 
E-OLYMP 137. GCD Find the Greatest Common Divisor of n numbers. 

► Use function gcd of two arguments to find gcd of n integers. 

a1 a2

gcd(a1,a2)

a3

gcd(gcd(a1,a2),a3)

a4

gcd(gcd(gcd(a1,a2),a3),a4)
 

 

Least Common Multiple (lcm) can be found from the formula: 

gcd(a, b) * lcm(a, b) = a * b 
 

long long lcm(long long a, long long b) 

{ 

  return a / gcd(a, b) * b; 

} 

 

Power xn. How to find this value if x and n are given? We can use just simple loop 

with complexity O(n) like 

 
res = 1; 

for (i = 1; i <= n; i++) 

  res = res * x; 

 

Can we do it faster? For example, x10 = (x5)2 = (x * x4)2 = (x * (x2) 2)2. 

We can notice that x2n = (x2)n, or x100 = (x2)50. 

 

https://www.e-olymp.com/en/problems/137
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int f(int x, int n) 

{ 

  if (n == 0) return 1; 

  if (n % 2 == 0) return f(x * x, n / 2); 

  return x * f(x, n - 1); 

} 

 

Complexity O(log2n). 

 

E-OLYMP 5198. Modular Exponentiaion Find the value of xn mod m. 

► Implement a function f(x, n, m) = xn mod m. Use long long type to aviod 

overflow. 
 

long long f(long long x, long long n, long long m) 

{ 

  if (n == 0) return 1; 

  if (n % 2 == 0) return f((x * x) % m, n / 2, m); 

  return (x * f(x, n - 1, m)) % m; 

} 

 

E-OLYMP 9557. Bins and balls There are n bins in a row. There is also an 

infinite supply of balls of n distinct colors. Place exactly one ball into each bin, with the 

restriction that adjacent bins cannot contain balls of the same color. How many valid 

configurations of balls in bins are there? 

► Any of n balls can be put into the first box. The color of the ball in the second 

box must not match the color of the ball in the first box. Therefore, you can put any ball 

of n – 1 colors in the second box. In the i-th box, you can put a ball of any color that 

does not match the color of the ball in the (i – 1)-th box.  

n n-1 n-1 n-1 ... n-1

1 2 3 4 n

 
Thus, the number of different arrangements of balls in the boxes equals to 

n * (n – 1)n – 1 mod 109 + 7 

 

Binomial coefficient: k
nC  = 
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Proof. k
n

k
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int Cnk(int n, int k) 

{ 

  if (n == k) return 1; 

  if (k == 0) return 1; 

  return Cnk(n - 1, k - 1) + Cnk(n - 1, k); 

} 

 

E-OLYMP 5329. Party In how many ways can we choose among n students 

exactly k of them, who will get yogurt? Print the answer modulo 9929. 

► The answer is 9929 modk

nC . Use formula given above plus memoization and 

modular operation. 

 
int dp[501][501]; 

 

int Cnk(int n, int k) 

{ 

  if (n == k) return 1; 

  if (k == 0) return 1; 

  if (dp[n][k] != -1) return dp[n][k]; 

  return dp[n][k] = (Cnk(n - 1, k - 1) + Cnk(n - 1, k)) % 9929; 

} 

 

E-OLYMP 1642. Hometask Kolya is still trying to pass a test on Numbers 

Theory. The lecturer is so desperate about Kolya's knowledge that she gives him the 

same task every time. 

The problem is to check if n! is divisible by n2. 

► Since n! = 1 * 2 * … * n, then n! Is divisible by n. If n is prime, the product n! / 

n  = 1 * 2 * … * (n – 1) is not divisible by n. Therefore, for a prime n, the value of n! is 

not divisible by n2. 

If n is not prime, it can be represented as a product of two numbers (not necessarily 

prime): for example, n = a * b. Then n! = (a * b)! contains factors a, b, a * b and n! is 

divisible by n2. 

Consider two cases separately: 

 for n = 1 (neither prime nor composite) the value of n! is divisible by n2; 

 for n = 4 (composite) the value of n! is not divisible by n2. 

 

Consider the examples: 

If n = 5 (prime), then 5! = 1 * 2 * 3 * 4 * 5 is not divisible by 52. 

If n = 15 (composite), then 15! In its factorization contains the multiples 3, 5 and 

15, and therefore is divisible by 152. 

If n = 4 (composite), then 4! = 1 * 2 * 3* 4 is divisible by 4, but is not divisible by 

42. 

 

https://www.e-olymp.com/en/problems/5329
https://www.e-olymp.com/en/problems/1642
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Problems / Solutions. Solve the recurrence relations: 

 T(n) = 4T(n / 2) + n;  

a = 4, b = 2, f(n) = n, p(n) = abn
log  = 4log2n  = n2. 

f(n) < p(n) because n < n2, so T(n) = Θ(n2). 

 

We have abn
log  = 4log2n  = Θ(n2). 

f(n) = n = O( 4log2n ) for ɛ = 1, T(n) = Θ  abn
log  = Θ  4log2n  = Θ(n2). 

 

 T(n) = 4T(n / 2) + n2; 

a = 4, b = 2, f(n) = n2, p(n) = abn
log  = 4log2n  = n2. 

f(n) = p(n) because n2 = n2, so T(n) = Θ  nn log2 . 

 

We have abn
log  = 4log2n  = Θ(n2). 

f(n) = n = Θ( 4log2n ) = Θ(n2), T(n) = Θ  nn
ab log

log  = Θ  nn log
4log2  = Θ  nn log2 . 

 

 T(n) = 4T(n / 2) + n3; 

a = 4, b = 2, f(n) = n3, p(n) = abn
log  = 4log2n  = n2. 

f(n) > p(n) because n3 > n2, so T(n) = Θ(n3). 

 

We have abn
log  = 4log2n  = Θ(n2). 

f(n) = n3 = Ω  4log2n  for  ɛ = 1, T(n) = Θ(n3). 

 

 T(n) = 2T(n / 4) + n ; 

a = 2, b = 4, f(n) = n , p(n) = abn
log  = 2log4n  = n1/2 = n . 

f(n) = p(n) because n  = n , so T(n) = Θ  nn log . 

 

We have abn
log  = 2log4n  = Θ(n1/2) = Θ( n ). 

f(n) = n  = Θ( 2log4n ) = Θ( n ), T(n) = Θ  nn
ab log

log  = Θ  nn log . 

 

 

 T(n) = 6T(n / 3) + n; 

a = 6, b = 3, f(n) = n, p(n) = abn
log  = 6log3n  = 631.1n . 

f(n) < p(n) because n < 631.1n , so T(n) = Θ( 631.1n ). 

 

We have abn
log  = 6log3n  = Θ( 631.1n ). 



f(n) = n = O( 6log3n ), ɛ ≈ 0.631, T(n) = Θ  abn
log  = Θ  6log3n  = Θ( 631.1n ). 

 

 T(n) = 6T(n / 3) + n2; 

a = 6, b = 3, f(n) = n2, p(n) = abn
log  = 6log3n  = 631.1n . 

f(n) > p(n) because n2 > 631.1n , so T(n) = Θ(n2). 

 

We have abn
log  = 6log3n  = Θ( 631.1n ). 

f(n) = n2 = Ω  6log3n ,  ɛ = 0.2, T(n) = Θ(n2). 

 

 T(n) = 6T(n / 3) + nn ; 

a = 6, b = 3, f(n) = nn  = n1.5, p(n) = abn
log  = 6log3n  = 631.1n . 

f(n) < p(n) because n1.5 < 631.1n , so T(n) = ( 631.1n ). 

 

We have abn
log  = 6log3n  = Θ( 631.1n ). 

f(n) = n1.5 = O( 6log3n ), ɛ = 0.1, T(n) = Θ  abn
log  = Θ  6log3n  = Θ( 631.1n ). 

 

 T(n) = 9T(n / 3) + n2; 

a = 9, b = 3, f(n) = n2, p(n) = abn
log  = 9log3n  = n2. 

f(n) = p(n) because n2 = n2, so T(n) = ( nn log2 ). 

 

We have abn
log  = 9log3n  = Θ(n2). 

f(n) = n2 = Θ  9log3n , T(n) = Θ  nn
ab log

log  = Θ  nn log
9log3  = Θ( nn log2 ). 

 


