Classes in JAVA
Java is an Object-Oriented Language.

· Object − Objects have states and behaviors. Example: A dog has states – color, name, breed as well as behaviors – wagging the tail, barking, eating. An object is an instance of a class.

· Class − A class can be defined as a template/blueprint that describes the behavior/state that the object of its type support.

A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.

Java Class Definitions

When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an object of the class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. For example, we defined the Box data type using the keyword class as follows:

class Box
{
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
}
We can define a point like this:

class Point
{
 int x, y;
}
Constructors

When discussing about classes, one of the most important sub topic would be constructors. Every class has a constructor. If we do not explicitly write a constructor for a class, the Java compiler builds a default constructor for that class.

Point ()

{

}

Each time a new object is created, at least one constructor will be invoked. The main rule of constructors is that they should have the same name as the class. A class can have more than one constructor.

A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of a class with exactly the same sort of declaration that we declare variables of reference types.

import java.util.*;
class Box
{
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
}
class Point
{
 int x, y;
}
public class Main
{
 public static void main(String[] args)
 {
 Box b1 = new Box(); // Declare b1 of type Box
 Box b2 = new Box(); // Declare b2 of type Box
 Point a = new Point(), b = new Point(), c = new Point();
 // Declare three objects a, b, c of type Point
 }
}
The objects b1, b2 and a, b, c will have their own copy of data members. All of them are initialized with 0.

A constructor that has no parameter is known as default constructor. If we don’t define a constructor in a class, then compiler creates default constructor (with no arguments) for the class. And if we write a constructor with arguments or no-arguments then the compiler does not create a default constructor.
Default constructor provides the default values to the object like 0, null, etc. depending on the type.

Accessing the Data Members:

The data members of objects of a class can be accessed using the direct member access operator (.). Let us try the following example to make the things clear:

import java.util.*;
class Point
{
 int x, y;
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point(); // Point (0,0)
 System.out.println("Point a = (" + a.x + "," + a.y + ")");
 a.x = 3; a.y = 6; // Point (3,6)
 System.out.println("Point a = (" + a.x + "," + a.y + ")");
 }
}
Example. Add two points:

import java.util.*;
class Point
{
 int x, y;
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point();
 a.x = 3; a.y = 6; // Point (3,6)
 Point b = new Point();
 b.x = 7; b.y = 2; // Point (7,2)
 Point c = new Point();
 c.x = a.x + b.x; c.y = a.y + b.y; // (3,6) + (7,2) = (10,8)
 System.out.println("Point c = (" + c.x + "," + c.y + ")");
 }
}
Example. Create objects using constructors:

import java.util.*;
class Point
{
 int x, y;
 Point()
 {
 x = y = 0;
 // System.out.println("I am in empty constructor");
 }
 Point(int x1, int y1)
 {
 x = x1;
 y = y1;
 // System.out.println("I am in constructor with two arguments");
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point(3,6); // Point (3,6)
 Point b = new Point(7,2); // Point (7,2)
 Point c = new Point(); // Point (0,0)
 c.x = a.x + b.x; c.y = a.y + b.y; // (3,6) + (7,2) = (10,8)
 System.out.println("Point c = (" + c.x + "," + c.y + ")");
 }
}
this pointer

Every object in Java has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object.

Only member functions have a this pointer.

Example. Let’s create reference variable a of type Point. Let’s print this reference from the class. These references are the same.

import java.util.*;
class Point
{
 int x, y;
 Point()
 {
 x = y = 0;
 }
 void PrintThis()
 {
 System.out.println(this);
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point();
 Point b = new Point();
 System.out.print(a + " "); a.PrintThis();
 System.out.print(b + " "); b.PrintThis();
 }
}
A constructor that has parameters is known as parameterized constructor. If we want to initialize fields of the class with your own values, then use a parameterized constructor.

Like methods, we can overload constructors for creating objects in different ways. Compiler differentiates constructors on the basis of numbers of parameters, types of the parameters and order of the parameters.

Example. Consider class Person.

import java.util.*;
class Person
{
 String name;
 String surname;
 int age;
 Person()
 {
 name = surname = "undefined";
 age = 0;
 }
 Person(String name, String surname)
 {
 this.name = name;
 this.surname = surname;
 this.age = 0;
 }
 Person(String name, String surname, int age)
 {
 this.name = name;
 this.surname = surname;
 this.age = age;
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Person a = new Person(); // undefined person
 System.out.println("Person: " + a.name + " " + a.surname + " " + a.age);
 Person baby = new Person("Mike","Greenfield"); // age = 0
 System.out.println("Person: " + baby.name + " " + baby.surname + " " + baby.age);
 Person Peter = new Person("Peter","Smith",22); // Peter
 System.out.println("Person: " + Peter.name + " " + Peter.surname + " " + Peter.age);
 }
}
How constructors are different from methods in Java?

· Constructor(s) must have the same name as the class within which it defined while it is not necessary for the method in java.

· Constructor(s) do not return any type while method(s) have the return type or void if does not return any value.

· Constructor is called only once at the time of Object creation while method(s) can be called any numbers of time.

Class member functions

A member function of a class is a function that has its definition or its prototype within the class definition like any other variable. It operates on any object of the class of which it is a member, and has access to all the members of a class for that object.

Let’s create a function to print the data of a class Person.

import java.util.*;
class Person
{
 String name;
 String surname;
 int age;
 Person()
 {
 name = surname = "undefined";
 age = 0;
 }
 Person(String name, String surname, int age)
 {
 this.name = name;;
 this.surname = surname;
 this.age = age;
 }
 void Print()
 {
 System.out.println("Person: " + name + " " + surname + " " + age);

 }
}
public class Main
{
 public static void main(String[] args)
 {
 Person a = new Person(); // undefined person
 a.Print();
 Person Peter = new Person("Peter","Smith",22); // Peter
 Peter.Print();
 }
}
Example. Let’s create a function to print the data of a class Point.

import java.util.*;
class Point
{
 int x, y;
 Point()
 {
 x = y = 0;
 }
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 void Print()
 {
 System.out.println("(" + x + "," + y + ")");

 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point(3,6); // Point (3,6)
 Point b = new Point(7,2); // Point (7,2)
 Point c = new Point();
 c.x = a.x + b.x; c.y = a.y + b.y; // (3,6) + (7,2) = (10,8)
 a.Print(); b.Print(); c.Print();
 }
}
Example. Let us take previously defined class to access the members of the class using a member function instead of directly accessing them:

import java.util.*;
class Point
{
 private int x, y;
 void SetX(int x)
 {
 this.x = x;
 }
 void SetY(int y)
 {
 this.y = y;
 }
 int GetX()
 {
 return x;
 }
 int GetY()
 {
 return y;
 }
 void Print()
 {
 System.out.println("(" + x + "," + y + ")");

 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point();
 a.SetX(4); a.SetY(6); // a = (4,6)
 a.Print();
 // a.x = 5; gives error, member x is private
 System.out.println("(" + a.GetX() + "," + a.GetY() + ")");
 }
}
Example. Adding two points. Let’s create a function add that adds a point to the current.
import java.util.*;
class Point
{
 int x, y;
 Point()
 {
 x = y = 0;
 }
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 // this = this + a
 // add a point to the current point
 void add(Point a)
 {
 this.x += a.x;
 this.y += a.y;
 }
 void Print()
 {
 System.out.println("(" + x + "," + y + ")");

 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point(3,6); // Point (3,6)
 Point b = new Point(7,2); // Point (7,2)
 b.add(a); // b = b + a = (7,2) + (3,6) = (10,8)
 a.Print(); b.Print();
 }
}
Example. Adding two points. Let’s create a function add that returns the point equals to the current point + added.

import java.util.*;
class Point
{
 int x, y;
 Point()
 {
 x = y = 0;
 }
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 Point add(Point a)
 {
 return new Point(this.x + a.x,this.y + a.y);
 }
 void Print()
 {
 System.out.println("(" + x + "," + y + ")");

 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point(3,6); // Point (3,6)
 Point b = new Point(7,2); // Point (7,2)
 Point c = new Point();
 c = a.add(b); // c = a + b = (7,2) + (3,6) = (10,8)
 a.Print(); b.Print(); c.Print();
 }
}
Java toString() method
The toString() method returns the string representation of the object.

If you print any object, java compiler internally invokes the toString() method on the object. So overriding the toString() method, returns the desired output, it can be the state of an object etc. depends on your implementation.

Without overriding function, printing a, b, c prints the hashcode values of the objects but not the values of these objects.
import java.util.*;
class Point
{
 int x, y;
 Point()
 {
 x = y = 0;
 }
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 public String toString() //overriding the toString() method
 {
 return "(" + x + "," + y + ")";

 }
}
public class Main
{
 public static void main(String[] args)
 {
 Point a = new Point(3,6); // Point (3,6)
 Point b = new Point(7,2); // Point (7,2)
 Point c = new Point(); // Point (0,0)
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);
 }
}
this keyword with constructor

“this” keyword can be used inside the constructor to call another overloaded constructor in the same Class. It is called the Explicit Constructor Invocation. This occurs if a Class has two overloaded constructors, one without argument and another with the argument. Then “this” keyword can be used to call the constructor with an argument from the constructor without argument. This is required as the constructor cannot be called explicitly.
Warning!!! this keyword can only be the first statement in Constructor.

class Test
{
 int x;
 Test(int x)
 {
 this.x = x;
 }
 Test(int x, int y)
 {
 this(x * y);
 System.out.println(this.x + " " + x);
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Test a = new Test(2,3);
 }
}
Static keyword
static is a non-access modifier in Java which is applicable for the following:

· blocks

· variables

· methods

· nested classes

To create a static member (block, variable, method, nested class), precede its declaration with the keyword static. When a member is declared static, it can be accessed before any objects of its class are created, and without reference to any object. For example, in below java program, we are accessing static method f() without creating any object of Main class.

import java.util.*;
public class Main
{
 static void f()
 {
 System.out.println("I am in function f");
 }
 public static void main(String[] args)
 {
 System.out.println("Main started");
 f();
 }
}
Static variables
When a variable is declared as static, then a single copy of variable is created and shared among all objects at class level. Static variables are, essentially, global variables. All instances of the class share the same static variable.

Below is the java program to demonstrate that static block and static variables are executed in order they are present in a program.

import java.util.*;
public class Main
{
 static int a = m1();
 // static block
 static
 {
 System.out.println("Inside static block");
 }
 // static method
 static int m1()
 {
 System.out.println("from m1");
 return 20;
 }
 public static void main(String[] args)
 {
 System.out.println("Value of a : " + a);
 System.out.println("from main");
 }
}
Static blocks
Unlike C++, Java supports a special block, called static block (also called static clause) which can be used for static initializations of a class. This code inside static block is executed only once: the first time you make an object of that class or the first time you access a static member of that class (even if you never make an object of that class). For example, check output of following Java program.

import java.util.*;
class Test
{
 static int a = 2;
 static
 {

 System.out.println ("Started static block, a = " + a);
 a = 10;
 System.out.println ("Inside static block, a = " + a);
 }
}
public class Main
{
 public static void main(String[] args)
 {
 System.out.println (Test.a);
 }
}
Also, static blocks are executed before constructors. For example, check output of following Java program.

import java.util.*;
class Test
{
 static int a = 2;
 static
 {
 a = 10;
 System.out.println ("Inside static block, a = " + a);
 }
 Test()
 {
 a = 123;
 System.out.println ("Inside constructor, a = " + a);
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Test a = new Test();
 Test b = new Test();
 }
}
Unlike C/C++, static local variables are not allowed in Java. For example, following Java program fails in compilation with error “Static local variables are not allowed”.
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 int i = 5;
 static int j = 10;
 }
}
