Java Introduction

http://www.java-made-easy.com/
The Java programming language is easy to learn, whether you're totally new at programming, or just want to pick up a new language. It is the perfect computer language for being competitive in today's industries or even to create programs as a hobby. Java is also easy to set up, so advanced computer skills are NOT required.
Java Installation

http://www.java-made-easy.com/install-java.html
Go download the latest Java runtime environment:
http://www.java.com/en/download/manual.jsp
This will install Java on your machine. Get the version you need. Most of you probably have Windows, so you'll want to choose one of the Windows downloads. If you happen to have Solaris or Linux, you'd have to get one of those.
An integrated development environment (IDE) is a software application that provides comprehensive facilities to computer programmers for software development. An IDE normally consists of a source code editor, build automation tools and a debugger.

For programming with Java you can choose one of the next IDE:

1. Eclipse:

http://www.eclipse.org/downloads/
Go to Get Eclipse Neon, Download Packages:
http://www.eclipse.org/downloads/eclipse-packages/
Choose your operational system (Windows, Linux, Mac OS) and type (32-bit or 64-bit)

It is recommended to install Eclipse IDE for Java Developers.

You can upload Eclipse SDK 4.2.1. (Windows, 32-bit version) from

http://site.ada.edu.az/~medv/eclipse.zip
I stored it there for you :-)

2. NetBeans:
https://netbeans.org/downloads/
Warning! Java runtime environment and integrated development environment must be both 32-bit or 64-bit for compatibility.

For quick start you can use one of the available online Java compilers. For example

https://www.jdoodle.com/online-java-compiler/
https://www.onlinegdb.com/online_java_compiler
Hello World! – your first program

http://www.java-made-easy.com/java-hello-world.html
Now, we can start writing our first Java program. Following the tradition of learning a new programming language, here is your first Java program. The program would print out a greeting message “Hello, world!”

public class HelloWorld
{
 // This is comment in Hello World program
 public static void main(String[] args)
 {
 System.out.println("Hello World");
 }
}
public class HelloWorld is the beginning of your class file. The name of the class must be the same name as the file name itself. The name, including the capitalized letters, must match the file name in Java or it won't work. Helloworld is not the same as HelloWorld, because they are not exactly the same. The second HelloWorld has a capitalized W, the first one does not.

public static void main(String []args) is called the main method. Method is a function in the class.

You'll notice two open brackets like this one in front of the lines of code:

{

and then further down you see two closing brackets that looks like:

}

Anything you write inside the inner two brackets belong to the main method, and anything inside of the outer brackets belongs to the class. All methods and classes have opening and closing brackets.

You'll see "extra code" in different colors:

 // This is comment in Hello World program
Those are comments. Comments help you to remember what the code does and helps others who might read your code to understand what the code does. Nothing is worse than writing code and then coming to it later and forgetting what it all does!
The line

 System.out.println("Hello World");

makes the screen say “Hello World”.

Hello World program is simple, but it is important for you to see what Java code looks like.
Command Prompt
You can run your first program with your installed IDE pressing button “Run Project” or you can compile and run the program from the Command Prompt like this:

1. Create file “HelloWorld.java” that contains class HelloWorld.

2. Compile the file HelloWorld.java to create the HelloWorld.class file. Use instruction:
javac HelloWorld.java

3. Run the program. Java Virtual Machine (JVM) will interpret your code. Warning: do not type the extension of the file!
java HelloWorld

Java Virtual Machine (JVM) options:

-Xms

initial Java heap size

-Xmx

maximum Java heap size

-Xss

stack size for the thread

For example:

java –Xmx1024K –Xss1024K HelloWorld

As usually, 1024K is not enough to run even small Java application for Virtual Machine. Use more memory, for example:
java –Xmx4096K –Xss4096K HelloWorld
Passing parameters to application

class ParamJavaApp
{
 public static void main(String args[])
 {
 System.out.println("The first parameter is: " + args[0]);
 System.out.println("The second parameter is: " + args[1]);
 }
}
Compile
javac ParamJavaApp.java

And run with parameters:

java ParamJavaApp Hello World!
Read with Scanner

https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html
A simple text scanner can parse primitive types and strings using regular expressions. A Scanner breaks its input into tokens using a delimiter pattern, which by default matches whitespace. The resulting tokens may then be converted into values of different types using the various next methods.

The next program reads two numbers and prints their sum.

import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 int a = con.nextInt();
 int b = con.nextInt();
 int c = a + b;
 System.out.println(c);
 con.close(); // Some compilers demand to close the Scanner
 }
}
The same program that operates multiple test cases:
import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 while(con.hasNextInt())
 {
 int a = con.nextInt();
 int b = con.nextInt();
 int c = a + b;
 System.out.println(c);
 }
 con.close();
 }
}
Read two long numbers and print their sum.

import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 long a = con.nextLong();
 long b = con. nextLong();
 long c = a + b;
 System.out.println(c);
 con.close();
 }
}
Read two doubles and print their sum.

import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 double a = con.nextDouble();
 double b = con.nextDouble();
 double c = a + b;
 System.out.println(c);
 con.close();
 }
}
Consider some ways of printing the data:

1. Print the value on a separate line.

 int a = 123;

 System.out.println(a);
2. Print two values separated with a space and terminated with End Of Line (‘\n’) character.

 int a = 123, b = 456;

 System.out.println(a + " " + b);
3. Formatted print using printf function
 int a = 123, b = 456, c = a + b;

 System.out.printf("%d + %d = %d\n",a,b,c);
Java integer data types

[image: image1.png]___Tyee | Bits

byte 8 (-128 to 127)
short 16 (-32,768 to 32,767)
int 32 (~-2*10° to 2*109)

long 64 (~-9*10'8 to 2*108)

import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 byte a = 127; a++; // 2^7 - 1
 System.out.println(a); // -2^7
 short b = 32767; b++; // 2^15 - 1
 System.out.println(b); // -2^15
 int c = 2147483647; c++; // 2^31 - 1
 System.out.println(c); // -2^31
 long d = 9223372036854775807L; d++;// 2^63 - 1
 System.out.println(d); // -2^63
 con.close();
 }
}
Number literals

Numbers can be written in Java as:

· decimals;

· hexidecimal – add prefix 0x, like 0xFF;
· octal – add prefix 0, like 0377;
A integer literal is of type “long” if it is suffixed with L or lower case l; otherwise it is of type “int”.

import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 int a = 255, b = 0xFF, c = 0377;
 System.out.println(a + " " + b + " " + c); // 255 255 255
 long d = 1L << 63 - 1;
 System.out.println(d); // 4611686018427387904
 }
}
In Java, when you type a decimal number as 3.6, its interpreted as a double. double is a 64-bit precision, while float is a 32-bit precision. As a float is less precise than a double, the conversion cannot be performed implicitly.

If you want to create a float, you should end your number with f: 3.6f.

import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 float a = 1.23456f;
 System.out.println(a);
 con.close();
 }
}
Casting

When casting performs a narrowing operation, the information might be lost.

import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int a = 0x2A45Fe20;
 byte b = (byte)a;
 System.out.println(b); // 32 is decimal representation
 // of the last byte 0x20
 con.close();
 }
}
When double is casted to integer values, the fractional part is lost.

import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 double a = 23.4542;
 int b = (int)a;
 System.out.println(b); // 23
 con.close();
 }
}
Java boolean data type

The boolean type is used to represent true or false values.

import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 boolean a = (3 > 7);
 System.out.println(a); // false
 con.close();
 }
}
Java char data type

The char type is a single 16-bit Unicode character. It has a minimum value of 0 and a maximum value of 65,535 inclusive.

The char type is already an integer type, so you can simply use it in most places that you would use an int. To print it out as an integer (since characters are usually printed out as the character and not the integer value), simply cast it into an int.
Note that the first 128 characters of Unicode are identical to ASCII.
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 char a = 'A';
 System.out.println(a + " " + (int)a); // english letter
 char b = 'ї';
 System.out.println(b + " " + (int)b); // ukrainian letter
 }
}
Java primitive data types

There are eight primitive data types:

byte, short, int, long, float, double, boolean, char
Java data types

	data type
	type
	format

	integer, 1 byte
	byte
	%d

	integer, 2 bytes
	short
	%d

	integer, 4 bytes
	int
	%d

	integer, 8 bytes
	long
	%d

	real, 4 bytes
	float
	%f

	real, 8 bytes
	double
	%f

	character, 2 bytes Unicode
	char
	%c

	string
	string
	%s

Sample output program:
import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 int a = 12345678; a = a * a; // 4 bytes
 long b = 12345678; b = b * b; // 8 bytes
 double c = 1.123456789;
 char d = 'Q';
 String s = "Hello";
 System.out.printf("%d\n",a);
 System.out.printf("%d\n",b);
 System.out.printf("%f\n",c); // by default prints 6 digits
 System.out.printf("%c\n",d);
 System.out.printf("%s\n",s);
 System.out.printf("%.20f\n",c);
 System.out.printf("%.20f\n",c*c); // 16 digits after decimal
 // point is maximum for double
 System.out.printf("%.100f\n",c*c*c*c*c);
 con.close();
 }
}
