
Linked List

An array is a very useful data structure provided in programming languages. However, it has at

least two limitations:

 its size has to be known at compilation time and

 the data in the array are separated in computer memory by the same distance, which

means that inserting an item inside the array requires shifting other data in this array.

This limitation can be overcome by using linked structures. A linked structure is a collection of

nodes storing data and links to other nodes. In this way, nodes can be located anywhere in memory,

and passing from one node of the linked structure to another is accomplished by storing the addresses

of other nodes in the linked structure. Although linked structures can be implemented in a variety of

ways, the most flexible implementation is by using pointers.

Singly Linked Lists
If a node contains a data member that is a pointer to another node, then many nodes can be

strung together using only one variable to access the entire sequence of nodes. Such a sequence of

nodes is the most frequently used implementation of a linked list, which is a data structure composed

of nodes, each node holding some information and a pointer to another node in the list. If a node has a

link only to its successor in this sequence, the list is called a singly linked list.

Each node in the list is an instance of the following class definition:

data

next

class Node

{

 int data;

 Node next;

 public Node()

 {

 data = 0 ;

 next = null;

 }

 public Node(int data)

 {

 this.data = data;

 this.next = null;

 }

}

A node includes two data members: data and next. The data member is used to store

information, and this member is important to the user. The next member is used to link nodes to form a

linked list. It is an auxiliary data member used to maintain the linked list. It is indispensable for

implementation of the linked list, but less important (if at all) from the user’s perspective. Note that

Node is defined in terms of itself because one data member, next, is a pointer to a node of the same

type that is just being defined. Objects that include such a data member are called self-referential

objects.

The definition of a node also includes two constructors:

 the first constructor initializes the next pointer to null and leaves the value of data

unspecified.

 the second constructor takes two arguments: one to initialize the data member and

another to initialize the next member. The second constructor also covers the case when

only one numerical argument is supplied by the user. In this case, data is initialized to the

argument and next to null.

Let us create the next linked list:

p 10 15 30

null

One way to create this three-node linked list is to first generate the node for number 10, then the

node for 15, and finally the node for 30. Each node has to be initialized properly and incorporated into

the list.

Create the first node on the list and make the variable p a pointer to this node:

Node p = new Node(10);

This done in four steps:

 Create a new Node;

 The data member of this node is set to 10;

 the node’s next member is set to null;

 make p a pointer to the newly created node. This pointer is the address of the node, and it

is shown as an arrow from the variable p to the new node.

The second node is created with the assignment:

p.next = new Node(15);

Here p.next is the next member of the node pointed to by p.

p 10 15

null

The linked list is now extended by adding a third node with the assignment

p.next.next = new Node(30);

Here p.next.next is the next member of the second node. This cumbersome notation has to be

used because the list is accessible only through the variable p.

Our linked list example illustrates a certain inconvenience in using references: the longer the

linked list, the longer the chain of nexts to access the nodes at the end of the list. In this example,

p.next.next.next allows us to access the next member of the 3rd node on the list. But what if it were

the 103rd or, worse, the 1,003rd node on the list? Typing 1,003 nexts, as in p.next.next, would

be daunting. If we missed one next in this chain, then a wrong assignment is made. Also, the flexibility

of using linked lists is diminished. Therefore, other ways of accessing nodes in linked lists are needed.

import java.util.*;

class Node

{

p 10

null

 int data;

 Node next;

 public Node()

 {

 data = 0;

 next = null;

 }

 public Node(int data)

 {

 this.data = data;

 this.next = null;

 }

}

public class Main

{

 public static void main(String[] args)

 {

 Node p = new Node(10);

 p.next = new Node(15);

 p.next.next = new Node(30);

 System.out.println(p.data + " " + p.next.data + " " + p.next.next.data);

 }

}

One way is always to keep two pointers to the linked list: one to the first node and one to the last:

head 10 15 30

null
tail

The singly linked list implementation uses two classes: one class, Node, for nodes of the list, and

another, LinkedList, for access to the list. The class LinkedList defines two data members, head and

tail, which are pointers to the first and the last nodes of a list. Method Empty() checks if the list is

empty:

class LinkedList

{

 Node head, tail;

 public LinkedList()

 {

 head = null;

 tail = null;

 }

 public boolean Empty()

 {

 return head == null;

 }

}

Besides the head and tail members, the class LinkedList also defines member functions that

allow us to manipulate the lists. We now look more closely at some basic operations on linked lists.

The list is declared with the statement:

LinkedList list = new LinkedList();

Insertion

Adding a node at the beginning of a linked list is performed in four steps:

1. An empty node is created. It is empty in the sense that the program performing insertion does

not assign any values to the data members of the node.

head

10 15 30

null

tail

2. The node’s info member is initialized to a particular integer.

head

10 15 30

null

tail

5

3. Because the node is being included at the front of the list, the next member becomes a pointer

to the first node on the list; that is, the current value of head.

head

10 15 30

null

tail

5

4. The new node precedes all the nodes on the list, but this fact has to be reflected in the value of

head; otherwise, the new node is not accessible. Therefore, head is updated to become the pointer to

the new node.

head

10 15 30

null

tail

5

The four steps are executed by the member function addToHead():

public void addFirst(int val)

{

 if (tail == null) // list is empty

 head = tail = new Node(val);

 else

 {

 Node temp = new Node(val);

 temp.next = head;

 head = temp;

 }

}

The member function addFirst () singles out one special case, namely, inserting a new node in

an empty linked list. In an empty linked list, both head and tail are null; therefore, both become

references to the only node of the new list. When inserting in a nonempty list, only head needs to be

updated.

The process of adding a new node to the end of the list has five steps.

1. An empty node is created.

head

10 15 30

null

tail

2. The node’s info member is initialized to an integer val.

head

10 15 30

null

tail

40

3. Because the node is being included at the end of the list, the next member is set to null.

head

10 15 30

null

tail

40

nill

4. The node is now included in the list by making the next member of the last node of the list a

pointer to the newly created node.

head

10 15 30

tail

40

nill

5. The new node follows all the nodes of the list, but this fact has to be reflected in the value of

tail, which now becomes the pointer to the new node.

head

10 15 30

tail

40

nill

public void addLast(int val)

{

 if (tail != null) // list is not empty

 {

 tail.next = new Node(val);

 tail = tail.next;

 }

 else head = tail = new Node(val);

}

All these steps are executed in the if clause of addLast(). The else clause of this function is

executed only if the linked list is empty. If this case were not included, the program may crash because

in the if clause we make an assignment to the next member of the node referred by tail. In the case of

an empty linked list, it is a pointer to a nonexisting data member of a nonexisting node.

Deletion

First we consider deletion a node from the beginning of the list. Function returns true is

deletion is successful, otherwise false. There are now two special cases to consider:

 One case is when we attempt to remove a node from an empty linked list. If such an

attempt is made, the program is very likely to crash, which we don’t want to happen. So

in this case we do nothing, but simply return false.

 The second special case is when the list has only one node to be removed. In this case,

the list becomes empty, which requires setting tail and head to null.

public boolean removeFirst()

{

 if (Empty()) return false;

 if (head == tail) // only one node in a list

 head = tail = null;

 else head = head.next;

 return true;

}

Now consider the process of deleting a node from the end of the list. It is implemented as the

member function removeLast(). The problem is that after removing a node, tail should refer to the new

tail of the list; that is, tail has to be moved backward by one node. But moving backward is impossible

because there is no direct link from the last node to its predecessor. Hence, this predecessor has to be

found by searching from the beginning of the list and stopping right before tail. This is accomplished

with a temporary variable temp that scans the list within the for loop. The variable temp is initialized

to the head of the list, and then in each iteration of the loop it is advanced to the next node.

In removing the last node, the two special cases are the same as in removeFirst():

 If the list is empty, then nothing can be removed;

 When a single-node list becomes empty after removing its only node, which also requires

setting head and tail to null.

public boolean removeLast()

{

 if (Empty()) return false;

 if (head == tail) // only one node in a list

 {

 head = tail = null;

 }

 else // if more than one node in the list

 {

 Node temp;

 // find the predecessor of tail

 for(temp = head; temp.next != tail; temp = temp.next);

 tail = temp; // the predecessor of tail becomes tail

 tail.next = null;

 }

 return true;

}

Consider the list, where temp first refers to the head node holding number 10:

head

10 15 30

null

tail

temp

After executing the assignment temp = temp.next, temp refers to the second node:

head

10 15 30

null

tail

temp

Because this node is the next to last node, the loop is exited, after which the last node is deleted:

head

10 15

tail

temp

Because tail is now pointing to a nonexisting node, it is immediately set to point to the next to

last node currently pointed to by temp:

head

10 15

tail

temp

To mark the fact that it is the last node of the list, the next member of this node is set to null:

head

10 15

null

tail

temp

The most time-consuming part of deleteFromTail() is finding the next to last node performed by

the for loop. It is clear that the loop performs n – 1 iterations in a list of n nodes, which is the main

reason this member function takes O(n) time to delete the last node.

Java implementation:

import java.util.*;

class ListNode

{

 int data;

 ListNode next;

 public ListNode(int data)

 {

 this.data = data;

 this.next = null;

 }

}

class LinkedList

{

 ListNode head, tail;

 public LinkedList()

 {

 head = null;

 tail = null;

 }

 public boolean Empty()

 {

 return head == null;

 }

 public void addFirst(int val)

 {

 if (tail == null) // list is empty

 head = tail = new ListNode(val);

 else

 {

 ListNode temp = new ListNode(val);

 temp.next = head;

 head = temp;

 }

 }

 public void addLast(int val)

 {

 if (tail != null) // list is not empty

 {

 tail.next = new ListNode(val);

 tail = tail.next;

 }

 else head = tail = new ListNode(val);

 }

 public boolean removeFirst()

 {

 if (Empty()) return false;

 if (head == tail) // only one node in a list

 head = tail = null;

 else head = head.next;

 return true;

 }

 public boolean removeLast()

 {

 if (Empty()) return false;

 if (head == tail) // only one node in a list

 {

 head = tail = null;

 }

 else // if more than one node in the list

 {

 ListNode temp;

 // find the predecessor of tail

 for(temp = head; temp.next != tail; temp = temp.next);

 tail = temp; // the predecessor of tail becomes tail

 tail.next = null;

 }

 return true;

 }

 public void Print()

 {

 ListNode head = this.head;

 while(head != null)

 {

 System.out.print(head.data + " ");

 head = head.next;

 }

 System.out.println();

 }

}

public class Main

{

 public static void main(String[] args)

 {

 LinkedList list = new LinkedList();

 list.addFirst(10); list.addFirst(15);

 list.removeLast(); list.addFirst(20); // 20 15

 list.Print();

 list.addLast(30); list.addLast(35);

 list.addFirst(77); list.addFirst(99); // 99 77 20 15 30 35

 list.Print();

 list.removeFirst(); list.removeFirst();

 list.removeFirst(); list.removeLast(); // 15 30

 list.Print();

 }

}

C++ implementation:

#include <stdio.h>

class ListNode

{

public:

 int data;

 ListNode *next;

 ListNode(int data) : data(data), next(NULL) {}

};

class LinkedList

{

public:

 ListNode *head, *tail;

 LinkedList()

 {

 head = NULL;

 tail = NULL;

 }

 bool Empty()

 {

 return head == NULL;

 }

 void addFirst(int val)

 {

 if (tail == NULL) // list is empty

 head = tail = new ListNode(val);

 else

 {

 ListNode *temp = new ListNode(val);

 temp->next = head;

 head = temp;

 }

 }

 void addLast(int val)

 {

 if (tail != NULL) // list is not empty

 {

 tail->next = new ListNode(val);

 tail = tail->next;

 }

 else head = tail = new ListNode(val);

 }

 bool removeFirst()

 {

 if (Empty()) return false;

 if (head == tail) // only one node in a list

 head = tail = NULL;

 else head = head->next;

 return true;

 }

 bool removeLast()

 {

 if (Empty()) return false;

 if (head == tail) // only one node in a list

 {

 head = tail = NULL;

 }

 else // if more than one node in the list

 {

 ListNode *temp;

 // find the predecessor of tail

 for (temp = head; temp->next != tail; temp = temp->next);

 tail = temp; // the predecessor of tail becomes tail

 tail->next = NULL;

 }

 return true;

 }

 void Print()

 {

 ListNode *head = this->head;

 while (head != NULL)

 {

 printf("%d ", head->data);

 head = head->next;

 }

 printf("\n");

 }

 int size()

 {

 int cnt = 0;

 ListNode *head = this->head;

 while (head != NULL)

 {

 cnt++;

 head = head->next;

 }

 return cnt;

 }

};

int i, n, x, cyc;

ListNode *temp;

int main(void)

{

 scanf("%d", &n);

 LinkedList *list = new LinkedList();

 if (list->Empty()) printf("Empty\n");

 list->addFirst(10); list->addFirst(13);

 list->addLast(20); list->addLast(24);

 list->removeFirst(); list->removeLast();

 list->Print();

 printf("%d\n", list->size());

 return 0;

}

