Java abstract class
A class that is declared using “abstract” keyword is known as abstract class. It can have abstract methods (methods without body) as well as concrete methods (regular methods with body). A normal class (non-abstract class) cannot have abstract methods.

An abstract class may or may not include abstract methods. Abstract classes cannot be instantiated, but they can be subclassed.

An abstract method is a method that is declared without an implementation (without braces, and followed by a semicolon), like this:

abstract int Perimeter();
If a class includes abstract methods, then the class itself must be declared abstract.

abstract class Rect
{
 int a, b;
 abstract int Perimeter();
}
There are cases when it is difficult or often unnecessary to implement all the methods in parent class. In these cases, we can declare the parent class as abstract, which makes it a special class which is not complete on its own.

A class derived from the abstract class must implement all those methods that are declared as abstract in the parent class.

Next class Rect contains one abstract (Perimeter) and one concrete (Area) method:

abstract class Rect
{
 int a, b;
 abstract int Perimeter();
 int Area()
 {
 return a * b;
 }
}
First, you declare an abstract class, Rect, to provide member variables and methods that are wholly shared by all subclasses. Rect also declares abstract methods that need to be implemented by all subclasses but must be implemented in different ways.
Each nonabstract subclass of Rect must provide implementations for the abstract methods.
Abstract class cannot be instantiated which means you cannot create the object of it. To use this class, you need to create another class that extends this this class and provides the implementation of abstract methods, then you can use the object of that child class to call non-abstract methods of parent class as well as implemented methods (those that were abstract in parent but implemented in child class).

 If a child does not implement all the abstract methods of abstract parent class, then the child class must need to be declared abstract as well.
E-OLYMP 9714. Java Abstract Shape Find the perimeter and the area of rectangle, square and triangle.

► Implement Shape abstract class. Implement classes Rectangle, Triangle that extend Shape. Implement class Square that extends Rectangle.
If p is a semiperimeter of triangle with sides a, b, c, its area can be found using Geron formula:

[image: image1.wmf](

)

(

)

(

)

c

p

b

p

a

p

p

-

-

-

abstract class Shape
{
 int a, b;
 Shape(int a, int b)
 {
 this.a = a;
 this.b = b;
 }
 abstract int Perimeter();
 abstract double Area();
}
class Rectangle extends Shape {}
class Square extends Rectangle {}
class Triangle extends Shape {}
E-OLYMP 9715. Java Abstract Array Min Max Find the sum of the smallest and the largest element in array of integers.

► Implement Arr abstract class. Implement Array class that extends Arr.

abstract class Arr
{
 int a[];
 int n;
 abstract int Min();
 abstract int Max();
}
class Array extends Arr
{

 Array (int n){}

 int Min(){...}

 int Max(){...}

}
E-OLYMP 9716. Java Abstract Array Sum Average Find the sum of array elements and their arithmetical mean.

► Implement Arr abstract class. Implement Array class that extends Arr.

abstract class Arr
{
 int a[];
 int n;
 abstract int Sum(); // sum
 abstract double Average(); // average
}
class Array extends Arr
{
 Array (int n){}

 int Sum(){...}

 double Average(){...}

}

E-OLYMP 87. Robot Simulate the movements of robot.

► Implement Rob abstract class. Implement Robot class that extends Rob.

abstract class Rob
{
 int x, left, right;
 abstract void MoveRight();
 abstract void MoveLeft();
 abstract void Stay();
 abstract int getRange();
}
class Robot extends Rob
{
 . . .
}

E-OLYMP 8653. Add subtract and multiply Simulate the operations with number: add, subtract and multiply.

► Implement Num abstract class. Implement Number class that extends Num.

abstract class Num
{
 protected int x;
 abstract void Add(int x);
 abstract void Subtract(int x);
 abstract void Multiply(int x);
}
class Number extends Num
{
 . . .
}

When an Abstract Class Implements an Interface

A class that implements an interface must implement all of the interface's methods. It is possible, however, to define a class that does not implement all of the interface's methods, provided that the class is declared to be abstract.
Abstract Classes Compared to Interfaces

Abstract classes are similar to interfaces. You cannot instantiate them, and they may contain a mix of methods declared with or without an implementation. However, with abstract classes, you can declare fields that are not static and final, and define public, protected, and private concrete methods. With interfaces, all fields are automatically public, static, and final, and all methods that you declare or define (as default methods) are public. In addition, you can extend only one class, whether or not it is abstract, whereas you can implement any number of interfaces.

_1649602094.unknown

