Java inheritance

Inheritance is an Object oriented feature which allows a class to inherit behavior and data from other class. One of the most intuitive examples of Inheritance in the real world is Father-Son relationship, where Son inherit Father's property.

In Java, it is possible to inherit attributes and methods from one class to another. We group the "inheritance concept" into two categories:

· subclass (child) – the class that inherits from another class

· superclass (parent) – the class being inherited from

To inherit from a class, use the extends keyword.

class Super {

}
class Sub extends Super {

}
Inheritance is used for code reuse by creating a type hierarchy. It's better to use Inheritance for type declaration but for code reuse composition is a better option because it's more flexible.

In the example below, the Car class (subclass) inherits the attributes and methods from the Vehicle class (superclass):

[image: image1.emf]Vehicle

String brand

voidhonk()

Car

String brand

voidhonk()

String modelName

class Vehicle {
 protected String brand = "Ford"; // Vehicle attribute
 public void honk() { // Vehicle method
 System.out.println("Tuut, tuut!");
 }
}
class Car extends Vehicle {
 public String modelName = "Mustang"; // Car attribute
}
class Main {
 public static void main(String[] args) {
 // Create a myCar object
 Car myCar = new Car();
 // Call the honk() method (from the Vehicle class)
 // on the myCar object
 myCar.honk();
 // Display the value of the brand attribute (from the Vehicle class)
 // and the value of the modelName from the Car class
 System.out.println(myCar.brand + " " + myCar.modelName);
 }
}
For example, think of a superclass called Animal that has a method called animalSound(). Subclasses of Animals could be Pigs, Cats, Dogs, Birds – and they also have their own implementation of an animal sound (the pig oinks, and the cat meows, etc.):

Overriding is a feature that allows a subclass or child class to provide a specific implementation of a method that is already provided by one of its super-classes or parent classes. When a method in a subclass has the same name, same parameters or signature and same return type (or sub-type) as a method in its super-class, then the method in the subclass is said to override the method in the super-class.

class Animal {
 public void animalSound() {
 System.out.println("The animal makes a sound");
 }
}
class Pig extends Animal {
 //This method overrides animalSound() of Animal
 public void animalSound() {
 System.out.println("The pig says: wee wee");
 }
}
class Dog extends Animal {
 //This method overrides animalSound() of Animal
 public void animalSound() {
 System.out.println("The dog says: bow wow");
 }
}
class Main {
 public static void main(String[] args) {
 Animal myAnimal = new Animal(); // Create a Animal object
 Animal myPig = new Pig(); // Create a Pig object
 Animal myDog = new Dog(); // Create a Dog object
 myAnimal.animalSound();
 myPig.animalSound();
 myDog.animalSound();
 }
}
super keyword

All accessible members, methods and constructors of the superclass can be called by super keyword.
import java.util.*;
class Shape
{
 private String shapeName;
 Shape(String name)
 {
 this.shapeName = name;
 }
 public String getShapeName() { return shapeName; }
}
class Circle extends Shape
{
 Circle()
 {
 super("Circle"); // calling the constructor of the Shape class
 }
}
class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 Circle c = new Circle();
 // we don't have getShapeName() ourselves
 // we inherit it from the Shape superclass
 System.out.println("My name is: " + c.getShapeName());
 con.close();
 }
}
When a subclass is created, there can be two options with the constructors:

a) Subclass explicitly calls superclass’s constructor through super(…). In this case, the superclass fields will be initialized though the called constructor and then the subclass is initialized.
When Child is initialized, it will print “Parent” followed with “Child”.

import java.util.*;
class Parent
{
 Parent()
 {
 System.out.println("Parent");
 }
}
class Child extends Parent
{
 Child()
 {
 super();
 System.out.println("Child");
 }
}
class Main
{
 public static void main(String[] args)
 {
 Child ch = new Child();
 }
}
b) Subclass does not call any super(…) constructor. In this case the initialization of the super class fields will be done through its default constructor (if any).
When Child() is initialized, it will print “Parent” followed with “Child”.
import java.util.*;
class Parent
{
 Parent()
 {
 System.out.println("Parent");
 }
}
class Child extends Parent
{
 Child()
 {
 System.out.println("Child");
 }
}
class Main
{
 public static void main(String[] args)
 {
 Child ch = new Child();
 }
}
Members and methods

import java.util.*;
class A
{
 public int someValue;
 public String getText() { return "Some info"; }
}
class B extends A
{
 public String getText() { return "Extra info"; }
 public void myMethod()
 {
 System.out.println("The value: " + super.someValue);
 System.out.println("The parent method: " + super.getText());
 System.out.println("The child method: " + getText());
 // or this.getText();
 }
}
class Main
{
 public static void main(String[] args)
 {
 B b = new B();
 b.myMethod();
 }
}
E-OLYMP 9656. Java Inheritance Shape Implement classes.

► Implement a class Shape. Implement classes Circle, Rectangle, Triangle that extends Shape.

E-OLYMP 9657. Java Inheritance Rectangle Square Find the perimeter and area of a square.

► Implement class Rectangle. Implement class Square that extends Rectangle.
Method Overriding
In a class hierarchy, when a method in a subclass has the same signature (name, return type and parameters) as a method in its superclass, then this method is said to override the method in the superclass.
import java.util.*;
class Parent
{
 int f(int x, int y)
 {
 return x + y;
 }
}
class Child extends Parent
{
 int f(int x, int y)
 {
 return x * y;
 }
}
class Main
{
 public static void main(String[] args)
 {
 Child c = new Child();
 System.out.println(c.f(5,6));
 }
}
When the f(a,b) of the Child is called, it will find the product. If this method is removed from the Child, then the version of Parent will be called and will find the sum.

So, the method in the Child overrides the superclass’s implementation.
Overriding vs Overloading

Overriding is when a method in a subclass has the same signature as in superclass.

Overloading is when the same named methods have different argument list and return types:

int min(int a, int b);
double min(double a, double b);
float min(float a, float b);
If the method signature is different, then it’s not an overriding – these methods are just overloaded. In the next example, the Child class has both min(int, int) and min(double, double) methods
import java.util.*;
class Parent
{
 int min(int x, int y)
 {
 return (x < y) ? x : y;
 }
}
class Child extends Parent
{
 double min(double x, double y)
 {
 return (x < y) ? x : y;
 }
}
class Main
{
 public static void main(String[] args)
 {
 Child c = new Child();
 System.out.println(c.min(5,6));
 System.out.println(c.min(15.56,6.45));
 }
}
In Java, an instance of a child class can be assigned to the super class:

Parent p = new Child();
Compiler allows it since Child also has all accessible members/methods of the Parent (similar analogy to the automatic type conversion).
Calling print("Hello") will cause an error – this method is only available in Child. To use this method the declaration shall be done as usual.
import java.util.*;
class Parent
{
 void print()
 {
 System.out.println("Parent");
 }
}
class Child extends Parent
{
 void print() // Overriding
 {
 System.out.println("Child");
 }
 void print(String s) // Overloading
 {
 System.out.println(s);
 }
}
class Main
{
 public static void main(String[] args)
 {
 Parent p = new Child();
 p.print(); // Child
 //p.print("Hello"); // Error
 Child c = new Child();
 c.print(); // Child
 c.print("Hello"); // Ok
 p = new Parent();
 p.print(); // Parent
 }
}
Overriding and access modifiers

In Java, the access modifier of the overriding method in the subclass cannot be more restrictive than the overridden method of the superclass.

class Base
{
 public void show()
 {
 System.out.println("Base::show() called");
 }
}
class Derived extends Base
{
 protected void show() //cannot be more restrictive, can be public
 {
 System.out.println("Derived::show() called");
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Base b = new Derived();
 b.show();
 }
}
We cannot override a private method in Java as private methods scope is limited to that particular class only and they are not visible outside of that class, so they cannot be visible in derived class or subclass also. So the private methods are not overridden.

Overload and Override static methods

Static methods can be overloaded. We can have two or more static methods with the same name but different in input parameters.

class Base
{
 public static void show()
 {
 System.out.println("no parameters");
 }
 public static void show(String s)
 {
 System.out.println(s);
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Base b = new Base();
 b.show();
 b.show("Hello");
 }
}
We cannot overload two methods if they differ only by static keyword.
class Base
{
 public void show()
 {
 System.out.println("no parameters");
 }
 public static void show() // Compile error
 {
 System.out.println("static");
 }
}
public class Main
{
 public static void main(String[] args)
 {
 Base b = new Base();
 b.show();
 }
}
Final
In Java, the final keyword define objects and types as unmodifiable.

public class Main
{
 public static void main(String[] args)
 {
 int x = 100;
 x = 12;
 final int y = 10;
 y = 5; // Error
 }
}
Final objects and arrays (which are objects as well) can change its values through the methods and indices correspondingly but cannot have a new reference assigned to themselves.
public class Main
{
 public static void main(String[] args)
 {
 final int m[] = {1,2,3};
 m[1] = 100;
 m = new int[4]; // Error
 }
}
Final for CONSTANTS

Final keyword is usually used to define members as constants:
final int MAX_VALUE = 25;
To make the constant available without a class instantiation public and static keywords shall be used:
public static final int MAX_VALUE = 25;
Final – prevention of overriding

Using final keyword in method declaration prevents its overriding:
class Parent
{
 public final void someMethod()
 {
 System.out.println("Parent");
 }
}
class Child extends Parent
{
 public void someMethod() // will cause an error: cannot override final
 {
 System.out.println("Child");
 }
}
public class Main
{
 public static void main(String[] args)
 {
 }
}
Final – prevention of inheritance

Declares a class as final means the class cannot be extended by any other class:
final class Parent
{
 public final void someMethod()
 {
 System.out.println("Parent");
 }
}
class Child extends Parent // will cause an error: Parent is final
{
}
public class Main
{
 public static void main(String[] args)
 {
 }
}
Variable Shadowing and Hiding in Java

Java has three categories of variables:

· Instance Variables – are defined inside a class and have object level scope;
· Class Variables – are defined inside a class with static keyword, these variables have a class level scope and are common to all objects of the same class;
· Local Variables – are defined inside a method or in any conditional block, have the block-level scope and only accessible in the block where it defined.

import java.util.*;
class Parent {
 int x = 10; // instance variable
 static int y = 20; // class variable
 public void print() {
 int z = 30; // local variable
 System.out.println(x);
 }
}
public class Main
{

public static void main(String[] args)

{
 Parent parent = new Parent();
 System.out.println(parent.x + " " + parent.y);

}
}
What is Variable Shadowing

Variable shadowing happens when we define a variable in a closure scope with a variable name and we have already defined a variable in outer scope with the same name.
In other words, when a local variable has the same name as one of the instance variable, the local variable shadows the instance variable inside the method block.
In the following example, there is an instance variable named x and inside method printLocalVariable(), we are shadowing it by the local variable x.
import java.util.*;
class Parent {
 // Declaring instance variable by name `x`
 String x = "Parent`s Instance Variable";
 public void printInstanceVariable() {
 System.out.println(x);
 }
 public void printLocalVariable() {
 // Shadowing instance variable `x` by a local variable with same name
 String x = "Local Variable";
 System.out.println(x);
 // If we still want to access instance variable,
 // we do that by using `this.x`
 System.out.println(this.x);
 }
}
public class Main
{

public static void main(String[] args)

{
 Parent parent = new Parent();
 parent.printInstanceVariable();
 parent.printLocalVariable();

}
}
What is variable Hiding

Variable Hiding happens when we define a variable in child class with a variable name which we have already used to define a variable in the parent class. A child class can declare a variable with the same name as an inherited variable from its parent class, thus hiding the inherited variable.
In other words, when the child and parent class both have a variable with same name child class's variable hides parent class's variable.
In the below example, we are hiding the variable named x in the child class while it is already defined by its parent class.

import java.util.*;
class Parent {
 // Declaring instance variable by name `x`
 String x = "Parent`s Instance Variable";
 public void printInstanceVariable() {
 System.out.println(x);
 }
}
class Child extends Parent
{
 // Hiding Parent class's variable `x`
 // by defining a variable in child class with same name.
 String x = "Child`s Instance Variable";
 @Override
 public void printInstanceVariable()
 {
 System.out.println(x);
 // If we still want to access variable from super class,
 // we do that by using `super.x`
 System.out.println(super.x);
 }
}
public class Main
{

public static void main(String[] args)

{
 Child ch = new Child();
 ch.printInstanceVariable();

}
}
Variable Hiding is not the same as Method Overriding

While variable hiding looks like overriding a variable similar to method overriding but it is not,
· Overriding is applicable only to methods
· Hiding is applicable variables.

In the case of method overriding, overridden methods completely replaces the inherited methods so when we try to access the method from parent’s reference by holding child’s object, the method from child class gets called.
But in variable hiding child class hides the inherited variables instead of replacing, so when we try to access the variable from parent’s reference by holding child’s object, it will be accessed from the parent class.
1. The Child class’s object contains both variables (one inherited from the Parent class and another declared in Child itself) but the child class variable hides the parent class’s variable.

2. Because the declaration of x in class Child hides the definition of x in class Parent, within the declaration of class Child, the simple name x always refers to the field declared within class Child. And if the code in methods of the Child class wants to refer to the variable x of the Parent class, then this can be done as super.x.

When an instance variable in a subclass has the same name as an instance variable in a super class, then the instance variable is chosen from the reference type.

class Parent {
 int x = 10;
 void print()
 {
 System.out.println(x); // 10
 }
}
class Child extends Parent
{
 int x = 20;
 void print()
 {
 System.out.println(x); // 20
 System.out.println(super.x); // 10
 }
}
public class Main
{

public static void main(String[] args)

{

 Parent parent = new Parent();

 System.out.println(parent.x); // 10

 parent.print(); // 10

 Child child = new Child ();

 System.out.println(child.x); // 20

 child.print(); // 20 10

 Parent p = new Child ();

 System.out.println(p.x); // 10

 p.print(); // 20 10
 }
}
instanceof

The java instanceof operator is used to test whether the object is an instance of the specified type (class or subclass or interface).

The instanceof in java is also known as type comparison operator because it compares the instance with type. It returns either true or false. If we apply the instanceof operator with any variable that has null value, it returns false.

class Animal {
}
class Main {
 public static void main(String[] args) {
 Animal a = new Animal();
 Animal b = null;
 System.out.println(a instanceof Animal); // true
 System.out.println(b instanceof Animal); // false
 }
}
When Subclass type refers to the object of Parent class, it is known as downcasting. If we perform it directly, compiler gives Compilation error. If you perform it by typecasting, ClassCastException is thrown at runtime.
class Animal {
}
class Dog extends Animal {
}
class Main {
 public static void main(String[] args) {
 Dog d = new Animal(); // Compile error
 Dog b = (Dog)new Animal(); // Run Time Error
 }
}
· A parent object is not an instance of Child

· A parent reference referring to a Child is an instance of Child

class Animal {
}
class Dog extends Animal {
}
class Main {
 public static void main(String[] args) {
 Animal a = new Animal();
 // A parent object is not an instance of Child
 System.out.println(a instanceof Animal); // true
 System.out.println(a instanceof Dog); // false
 // A parent reference referring to a Child is an instance of Child
 a = new Dog();
 System.out.println(a instanceof Animal); // true
 System.out.println(a instanceof Dog); // true
 Dog b = new Dog();
 System.out.println(b instanceof Animal); // true
 System.out.println(b instanceof Dog); // true
 }
}
Let a be a variable of superclass referring to superclass. Then it is an instance of a superclass only.

Let a be a variable of superclass referring to subclass. Then it is an instance of a superclass and subclass.

Let a be a variable of subclass. Then it is an instance of a superclass and subclass.

class Person {
}
class Teacher extends Person {
}
class Main {
 public static void main(String[] args) {
 Person p[] = new Person[5];
 // all p[i] are instances of Person.
 // But some of them are instances of Teacher
 p[0] = new Person(); // instance of Person only
 p[1] = new Teacher();// instance of Person, Teacher
 p[2] = new Teacher();// instance of Person, Teacher
 p[3] = new Person(); // instance of Person only
 p[4] = new Teacher();// instance of Person, Teacher
 //for(int i = 0; i < 5; i++)
 // System.out.print(p[i] + " ");
 for(int i = 0; i < 5; i++)

if (p[i] instanceof Teacher)
 System.out.print("Teacher "); else System.out.print("Person ");
 }
}

[image: image2.emf]p[0]p[1]p[2]p[3]p[4]

PersonTeacherTeacherTeacherPerson

p

Polymorphism is the ability of an object to take on many forms. The most common use of polymorphism in OOP occurs when a parent class reference is used to refer to a child class object.
_1648651655.vsd
Vehicle

String brand

void honk()

Car

String brand

void honk()

String modelName

_1649067002.vsd
p[0]

p[1]

p[2]

p[3]

p[4]

Person

Teacher

Teacher

Teacher

Person

p

