Euler function

Group

A group $G = \langle S, \circ \rangle$ is a pair, where

- S is a finite or infinite set of elements;
- ^o is a binary operation (called the group operation) that together satisfy the four fundamental properties of *closure*, *associativity*, *the identity property*, and *the inverse property*.

1. Closure: If a and b are two elements in G, then a ° b is also in G.

2. Associativity: The defined operation ° is associative, i.e., for all $a, b, c \in G$ we have: $(a \circ b) \circ c = a \circ (b \circ c)$.

3. **Identity**: There is an identity element I (a.k.a. 1, E or *e*) such that I ° a = a ° I = a for every element $a \in G$.

4. **Inverse**: There must be an *inverse* (a.k.a. *reciprocal*) of each element. Therefore, for each element *a* of G, the set contains an element $b = a^{-1}$ such that

 $a^{\circ}a^{-1} = a^{-1} \circ a = \mathbf{I}$

Let N be a set of positive integers. Then:

- <N, +> is **not** a group, there is no *identity* element.
- $\langle N \cup \{0\}, +\rangle$ is **not** a group, *identity* = 0, but there is no *inverse* element.

Let Z be a set of integers. Then:

• <Z, +> is a group, *identity* = 0, $3^{-1} = -3$, $-3^{-1} = 3$.

• <Z, *> is **not** a group, *identity* = 1, but there is no *inverse* element.

Let Q be a set of fractions. Then:

• < Q, *> is a group, *identity* = 1, $3^{-1} = 1/3$, $2/7^{-1} = 7/2$.

Let M be a set of matrices. Then:

• $\langle M \setminus (0), * \rangle$ is a group, *identity* = E, each matrix has an *inverse*. Matrix multiplication is *associative*, but not *commutative*.

Complete residue system

A subset S of the set of integers is called a *complete residue system* modulo *n* if

- no two elements of S are congruent modulo *n*;
- S contains *n* elements;

For example, a complete residue system modulo 5 is $\{3, 4, 5, 6, 7\}$, which is equivalent to $\{0, 1, 2, 3, 4\}$.

 $Z_n = \{0, 1, 2, ..., n - 1\}$ is a complete residue system consisting of minimal nonnegative residues.

 $\langle Z_n, +_{mod n} \rangle$ is a group. For example, $Z_5 = \{0, 1, 2, 3, 4\}$. Closure: 3 + 4 = 2 because $(3 + 4) \mod 5 = 2$. Associativity: (3 + 4) + 2 = 3 + (4 + 2) = 4. Identity: I = 0. **Inverse**: $3^{-1} = 2$ because $3 + 2 = 0 \pmod{5}$, $4^{-1} = 1$.

Reduced residue system

A subset Z_n^* of the set of integers is called a *reduced residue system* modulo *n* if

- Each element in Z_n^* is no more than *n*;
- Each element in Z_n^* is coprime with *n*;

 $< Z_n^*$, * mod *n*> is a group.

For example, $Z_{10}^* = \{1, 3, 7, 9\}, Z_{12}^* = \{1, 5, 7, 11\}$. Product of any numbers from the set modulo *n* belongs to the same set:

If *p* is prime, then $Z_p^* = \{1, 2, 3, ..., p-1\}$. All positive integers less than *p* belong to Z_p^* because they are coprime with *p*. For example, $Z_7^* = \{1, 2, 3, 4, 5, 6\}$.

The cardinality of the set Z_n^* equals to **Euler function** $\varphi(n)$: $|Z_n^*| = \varphi(n)$

Below the **properties** of the Euler function are given:

- if p is prime, then $\varphi(p) = p 1$ and $\varphi(p^a) = p^a * (1 1/p)$ for any a.
- if *m* and *n* are coprime, then $\varphi(m * n) = \varphi(m) * \varphi(n)$.
- if $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$, the Euler function is calculated using the next formula:

$$\varphi(n) = n * (1 - 1/p_1) * (1 - 1/p_2) * ... * (1 - 1/p_k)$$

For example,

$$\begin{split} & \phi(20) = \phi(2^2 * 5) = 20 * (1 - 1/2) * (1 - 1/5) = 20 * 1/2 * 4/5 = 8, \\ & \phi(12) = \phi(2^2 * 3) = 12 * (1 - 1/2) * (1 - 1/3) = 12 * 1/2 * 2/3 = 4, \\ & \phi(10) = \phi(2 * 5) = 10 * (1 - 1/2) * (1 - 1/5) = 10 * 1/2 * 4/5 = 4 \end{split}$$

Function *euler* finds the value of $\varphi(n)$.

```
int euler(int n)
{
```

Initialize *result* with *n*.

int i, result = n;

Iterate over all prime divisors *i* of *n*.

for(i = 2; i * i <= n; i++)
{</pre>

If i is a prime divisor of n, calculate

```
result = result * (1 - 1 / i) = result - result / i
```

if (n % i == 0) result -= result / i;

Remove all divisors *i* from *n*.

```
while (n % i == 0) n /= i;
}
```

If n > 1, then initially *n* contained a prime divisor greater than \sqrt{n} . For example, number 10 = 2 * 5 contains prime divisor 5, greater than $\sqrt{10}$. Take this divisor into account when calculating the result.

```
if (n > 1) result -= result / n;
return result;
}
```

E-OLYMP <u>339. Again irreducible</u> The fraction m / n is called regular irreducible, if 0 < m < n and GCD(m, n) = 1. Find the number of regular irreducible fractions with denominator n.

The number of regular irreducible fractions with denominator *n* equals to Euler's function $\varphi(n)$. For n = 12 we have the following regular irreducible fractions:

$$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$$

Consider the set of all regular fractions with the denominator 12: $\frac{0}{12}, \frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}$ After simplifying, they will look like: $\frac{0}{1}, \frac{1}{12}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{11}{12}$ Let's group the fractions by their denominators: $\frac{0}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}, \frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$ Among the denominators, every divisor *d* of 12 occurs along with all $\varphi(d)$ of its

numerators. All denominators are divisors of 12. Hence

$$\varphi(1) + \varphi(2) + \varphi(3) + \varphi(4) + \varphi(6) + \varphi(12) = 12$$

If we start with a series of irreducible fractions 0 / m, 1 / m, ..., (m - 1) / m, we can get the equality:

$$n = \sum_{d|n} \varphi(d)$$

E-OLYMP <u>1563. Send a table</u> Jimmy have to calculate a function f(x, y) where x and y are both integers in the range [1, n]. When he knows f(x, y), he can easily derive $f(k^*x, k^*y)$, where k is any integer from it by applying some simple calculations involving f(x, y) and k.

Note that the function *f* is not symmetric, so f(x, y) can not be derived from f(y, x).

For example if n = 4, he only needs to know the answers for 11 out of the 16 possible input value combinations:

f(1,1)	f(1,2)	f(1,3)	f(1,4)
f(2,1)		f(2,3)	
f(3,1)	f(3,2)		f(3,4)
f(4,1)		f(4,3)	

The other 5 can be derived from them:

- f(2, 2), f(3, 3) and f(4, 4) from f(1, 1);
- f(2, 4) from f(1, 2);
- f(4, 2) from f(2, 1);

For the given value of *n* find the minimum number of function values Jimmy needs to know to compute all n^2 values f(x, y).

Let res(i) be the minimum required number of known values of f(x, y), where x, $y \in \{1, ..., i\}$. Obviously, res(1) = 1, since for n = 1 it is enough to know f(1, 1).

Let the value of res(i) is known. For n = i + 1 we must find the values

			f(1,i+1)
			f(2,i+1)
			f(i,i+1)
f(i+1,1)	f(i+1,2)	 f(i+1,i)	f(i+1,i+1)

The values f(j, i + 1) and $f(i + 1, j), j \in \{1, ..., i + 1\}$ can be derived from the known values if GCD(j, i + 1) > 1, that is, if the numbers *j* and *i* + 1 are not coprime. Therefore, it is necessary to know all such f(j, i + 1) and f(i + 1, j), for which *j* and *i* + 1 are coprime. The number of such values is $2 * \varphi(i + 1)$, where φ is Euler's function. Thus

res(1) = 1,
res(*i* + 1) = res(*i*) + 2 *
$$\varphi(i + 1)$$
, *i* > 1

Let's find the values of res(*i*) for some values of *i*:

res(1) = 1,
res(2) = res(1) + 2 *
$$\phi(2)$$
 = 1 + 2 * 1 = 3,

$$res(3) = res(2) + 2 * \varphi(3) = 3 + 2 * 2 = 7,$$

Euler's theorem. If *a* and *n* are coprime, then $a^{\varphi(n)} \equiv 1 \pmod{n}$. $|\mathbb{Z}_n^*| = \varphi(n)$

Proof. Let $Z_n^* = \{r_1, ..., r_k\}$, where $k = \varphi(n)$. Then if we take any $a \in Z_n^*$ and find all possible products $a * r_i$, we get a set $\{r_1, ..., r_k\}$ that is just a permutation of $\{r_1, ..., r_k\}$. Consider the system of congruence equations:

$$ar_1 \equiv r_1' \pmod{n},$$

$$ar_2 \equiv r_2' \pmod{n},$$

$$\dots,$$

$$ar_k \equiv r_k' \pmod{n}$$

Multiply the equations:

 $a^{k} * r_{1} * \dots * r_{k} \equiv r_{1} * \dots * r_{k}' \pmod{n}$

Since the products $r_1 * ... * r_k$ and $r_1 * ... * r_k$ ' are equal and coprime modulo n, we'll divide the equality by this product. We get

 $a^k \equiv 1 \pmod{n}$

Since $k = \varphi(n)$, we have

 $a^{\varphi(n)} \equiv 1 \pmod{n}$

Fermat's theorem (a special case of Euler's theorem). If *p* is prime, $a \in \mathbb{Z}_p^*$, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Corollary. If we multiply both sides of $a^{p-1} \equiv 1 \pmod{p}$ by *a*, we obtain $a^p \equiv a \pmod{p}$

Corollary. $a^{b} \pmod{c} = a^{b'} \pmod{c}$, where $b' = b \mod{\phi(c)}$. **Proof.** Let $b = k\phi(c) + b'$.

Then
$$a^b \pmod{c} = a^{k\varphi(c)+b'} \pmod{c} = \left(a^{\varphi(c)}\right)^k \cdot a^{b'} \pmod{c} = a^{b'} \pmod{c}$$
.

Example. Find the value of $2^{100} \mod 17$. Since $\varphi(17) = 16$, $2^{100} \mod 17 = 2^{100 \mod 16} \mod 17 = 2^4 \mod 17 = 16$.

Find the value of $2^{1000} \mod 100$. Since $\varphi(100) = \varphi(2^2 * 5^2) = 100 * (1 - 1/2) * (1 - 1/5) = 100 * 1/2 * 4/5 = 40$, $2^{1000} \mod 100 = 2^{100 \mod 40} \mod 100 = 2^{20} \mod 100 = 1048576 \mod 100 = 76$.

Example. Let's find an inverse for each element from $Z_{10}^* = \{1, 3, 7, 9\}$. From the Euler theorem we have $a^{\varphi(10)} \equiv 1 \pmod{10}$ or $a^4 \equiv 1 \pmod{10}$, $a^* a^3 \equiv 1 \pmod{10}$, so $a^{-1} = a^3 \pmod{10}$

		u	- u	(IIIO	u 10)		
		а	1	3	7	9	
		a ³	1	27	343	729	
	a ³ mo	d 10	1	7	3	9	a ⁻¹
1	• • 1	<u> </u>					

So
$$1^{-1} = 1$$
, $3^{-1} = 7$, $7^{-1} = 3$, $9^{-1} = 9$.

E-OLYMP 5213. Inverse Prime number *n* is given. The inverse number to $i (1 \le i < n)$ is such number *j* that $i * j = 1 \pmod{n}$. Its possible to prove that for each *i* exists only one inverse. For all possible values of *i* find the inverse numbers.

Since the number *n* is prime, then by Fermat's theorem $i^{n-1} \mod n = 1$ for every $1 \le i < n$. This equality can be rewritten in the form $(i * i^{n-2}) \mod n = 1$, whence the inverse of *i* equals to $j = i^{n-2} \mod n$.

Let n = 5. Consider the table:

i	1	2	3	4
i ³ mod 5	1 ³ mod 5	2 ³ mod 5	3 ³ mod 5	4 ³ mod 5
	1 mod 5	8 mod 5	27 mod 5	64 mod 5
	1	3	2	4

E-OLYMP <u>9606. Modular division</u> Three positive integers *a*, *b* and *n* are given. Find the value of $a / b \mod n$. You must fund such *x* that $b * x = a \mod n$.

Since number *n* is prime, then by Fermat's theorem $b^{n-1} \mod n = 1$ for every $1 \le b < n$. This equality can be rewritten in the form $(b * b^{n-2}) \mod n = 1$, whence the inverse of *b* equals to $y = b^{n-2} \mod n$.

Hence $a / b \mod n = a * b^{-1} \mod n = a * y \mod n$.

Consider the sample: compute 4 / 8 mod 13. To do this, solve the equation $8 * x = 4 \mod 13$, wherefrom $x = (4 * 8^{-1}) \mod 13$.

Number 13 is prime, Fermat's theorem implies that $8^{12} \mod 13 = 1$ or $(8 * 8^{11}) \mod 13 = 1$. Therefore $8^{-1} \mod 13 = 8^{11} \mod 13 = 5$.

Compute the answer: $x = (4 * 8^{-1}) \mod 13 = (4 * 5) \mod 13 = 20 \mod 13 = 7$.

E-OLYMP <u>9627. a^b^c</u> Find the value of

$$a^{b^{c}}mod(10^{9}+7)$$

▶ By Fermat's little theorem $a^{p-1} = 1 \pmod{p}$, where *p* is prime. The number $p = 10^9 + 7$ is prime. Hence, for example, it follows that $a^{(p-1)*l} = 1 \pmod{p}$ for any number *l*.

To evaluate the expression a^b^c first find $k = b^c$, then calculate a^k . However, the number b^c is large, we represent it in the form $b^c = (p-1) * l + s$ for some l and s < p-1. Then

 $a^{(b^c)} \mod p = a^{(p-1)*l+s} \mod p = (a^{(p-1)*l}*a^s) \mod p = a^s \mod p$ It's obvious that $s = b^c \mod (p-1)$. Hence

 $a^{(b^c)} \mod p = a^{(b^c)} \mod (p-1) \mod p$

Let's calculate the value of 3²³ mod 7. Module 7 is chosen to be prime. The value of expression is

 $3^{(2^3)} \mod 7 = 3^8 \mod 7 = 6561 \mod 7 = (937 * 7 + 2) \mod 7 = 2$

Fermat's theorem implies that $3^6 \mod 7 = 1$. Therefore, for any positive integer k $(3^6 \mod 7)^k = 3^{6k} \mod 7 = 1$ Since $2^3 = 2^3 = 8$, then $3^8 \mod 7 = 3^{6^*1+2} \mod 7 = 3^2 \mod 7 = 9 \mod 7 = 2$

The original expression can also be evaluated as

 $3^{(2^3)} \mod 7 = 3^8 \mod 7 = 3^8 \mod 6 \mod 7 = 3^2 \mod 7 = 9 \mod 7 = 2$

E-OLYMP <u>1083. Sequence</u> In a sequence of numbers $a_1, a_2, a_3, ...$ the first term is given, and the other terms are calculated using the formula:

 $a_i = (a_{i-1} * a_{i-1}) \mod 10000$

Find the *n*-th term of the sequence.

- Let us express the first terms of the sequence in terms of a_1 :
 - $a_2 = a_1^2 \mod{10000}$,
 - $a_3 = a_2^2 \mod 10000 = a_1^4 \mod 10000$,
 - $a_4 = a_3^2 \mod 10000 = a_2^4 \mod 10000 = a_1^8 \mod 10000$

The formula can be rewritten as $a_i = a_{i-1}^2 \mod 10000$, whence it follows that to calculate a_n , the number a_1 should be raised to the power 2^{n-1} :

$$a_n = a_1^{2'}$$

Considering that $a^b \mod n = a^{b \mod \varphi(n)} \mod n$, to find the result *res*, the following calculations should be performed:

$$x = 2^{n-1} \mod \varphi(10000) = 2^{n-1} \mod 4000,$$

$$res = a_1^x \mod 10000$$

E-OLYMP <u>7807. Happy sum</u> It is known that the number is happy, if its decimal notation contains only fours and sevens. For example, the numbers 4, 7, 47, 7777 and 4744474 are happy.

Let S be the set of happy numbers, no less than *a* and no more than *b*:

$$S = \{n : a \le n \le b, n \text{ is happy}\}$$

Calculate the remainder of dividing by 1234567891 the next sum:

 $\sum_{n \in S} n^n$

► The modulus p = 1234567891 is primt. So $n^{p-1} = 1 \pmod{p}$. We have $n^n \pmod{p} = (n \mod p)^{(p-1)+\dots+(p-1)+(n \mod (p-1))} \pmod{p} = (n \mod p)^{n \mod (p-1)} \pmod{p}$

For example $23^{23} \pmod{5} = (23 \mod 5)^{4+4+4+4+4+3} \pmod{5} = 3^3 \pmod{5}$, because $3^4 \pmod{5} = 1$.

Let $modPow(a, n) = a^n \mod p$. Since $n \le 10^{18}$, then the arguments of modPow(n, n) wikk have the type *long long* and when multiplying we get overflow. From the above equality we have:

 $modPow(n, n) = modPow(n \mod p, n \mod (p-1))$ Now we can pass *int* arguments to the function *modPow*.

To generate happy numbers, it should be noted that if *n* is happy, then numbers $10^{n} + 4$ and $10^{n} + 7$ will be also happy.

Recursive generation of happy numbers.

```
void f(long long n)
{
```

As soon as the next generated number n becomes greater than b, we stop to generate the numbers.

```
if (n > b) return;
```

Sum up the values n^n only for those happy numbers n, for which $a \le n \le b$.

if (n >= a) res = (res + modPow(n % MOD, n % (MOD - 1))) % MOD;

In *n* is a happy number, then numbers $10^*n + 4$ and $10^*n + 7$ will be also happy.

```
f(n * 10 + 4);
f(n * 10 + 7);
}
```

Generate the happy numbers starting from 0. Calculate the required sum in the *res* variable.

f(0);

E-OLYMP <u>4742. Number of divisors</u> The integer n is given. Find the number of its divisors, excluding divisors n and 1.

Let d(n) be the number of divisors of *n*. Obviously, d(1) = 1.

Let *p* be prime integer. Then *p* has two divisors: 1 and *p*. Hence d(p) = 2.

Let $n = p^k$ be the prime power. Then *n* has k + 1 divisors: 1, *p*, p^2 , p^3 , ..., p^k . So $d(p^k) = k + 1$.

Let $n = p^k q^l$. Consider two sets:

P ={1, p, p², p³, ..., p^k} and Q ={1, q, q², q³, ..., q^l}

Any divisor *d* of the number $p^k q^l$ can be represented in the form x * y, where $x \in P$, $y \in Q$. Divisor *x* from P can be chosen in k + 1 ways, divisor *y* from Q can be chosen in l + 1 ways. Hence the divisor d = x * y can be constructed in (k + 1) * (l + 1) ways.

Decompose the number *n* into prime factors: $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$. The number of divisors of *n* is

$$d(n) = (a_1 + 1) * (a_2 + 1) * \dots * (a_k + 1)$$

Factorize the number of n = 18:

 $18 = 2 * 3^2$

Therefore

d(18) = (1 + 1) * (2 + 1) = 2 * 3 = 6

Subtracting two divisors (1 and 18), we get the answer: 4 divisors.

Function *CountDivisors* factorize the number n and calculates the number of its divisors d(n). In the variable *res*, we count the number of divisors of the number n. In the *for* loop, when we meet the divisor i of n, in the variable c we calculate the degree with which i is included in the number n. That is, c is the maximum degree for which n is divisible by i^c .

```
int CountDivisors(int n)
  int c, i, res = 1;
  for(i = 2; i * i <= n; i++)</pre>
    if (n % i == 0)
    {
      c = 0;
      while(n % i == 0)
        n /= i;
        c++;
      }
      res *= (c + 1);
    }
  }
  if (n > 1) res *= 2;
  return res;
}
```

E-OLYMP <u>1564.</u> Number theory For the given positive integer *n* find the number of integers *m*, such that $1 \le m \le n$, $GCD(m, n) \ne 1$ and $GCD(m, n) \ne m$. GCD is an abbreviation for "greatest common divisor".

From the number *n*, we must subtract the number of coprime numbers with *n*, that equals to the Euler function $\varphi(n)$ (if *m* and *n* are coprime, then GCD(*m*, *n*) = 1), and

the number of its divisors (if *m* is a divisor of *n*, then GCD(m, n) = m). In this case, the number 1 will be simultaneously coprime with *n* and a divisor of *n*. Therefore, 1 should be added to the resulting difference.

If $n = p_1^{k_1} p_2^{k_2} \dots p_t^{k_t}$ is a factorization of *n*, it has $d(n) = (k_1 + 1) * (k_2 + 1) * \dots * (k_t + 1)$ divisors.

Thus, the number of required values of m for the given n equals to

 $n - \varphi(n) - \mathrm{d}(n) + 1$

Let n = 10. We have $\varphi(10) = 4$ coprime numbers with 10: 1, 3, 7, 9.

Number 10 has d(10) = d(2 * 5) = 2 * 2 = 4 divisors: 1, 2, 5, 10.

The number of integers *m*, such that $1 \le m \le 10$, GCD(*m*, 10) $\ne 1$ and GCD(*m*, 10) $\ne m$ is

$$10 - \varphi(10) - d(10) + 1 = 10 - 4 - 4 + 1 = 3$$

E-OLYMP <u>4107. Totient extreme</u> Given the value of *n*, you will have to find the value of H. The meaning of H is given in the following code:

```
H = 0;
for (i = 1; i <= n; i++) {
    for (j = 1; j <= n; j++) {
        H = H + totient(i) * totient(j);
    }
}
```

Totient or *phi* function, $\varphi(n)$ is an arithmetic function that counts the number of positive integers less than or equal to *n* that are relatively prime to *n*. That is, if *n* is a positive integer, then $\varphi(n)$ is the number of integers *k* in the range $1 \le k \le n$ for which GCD(n, k) = 1.

```
► Let us rewrite the sum H as follows:

\varphi(1) * \varphi(1) + \varphi(1) * \varphi(2) + ... \varphi(1) * \varphi(n) + \varphi(2) * \varphi(1) + \varphi(2) * \varphi(2) + ... \varphi(2) * \varphi(n) + ... \varphi(n) * \varphi(1) + \varphi(n) * \varphi(2) + ... \varphi(n) * \varphi(n) = 
\varphi(1) * (\varphi(1) + \varphi(2) + ... \varphi(n)) + \varphi(2) * (\varphi(1) + \varphi(2) + ... \varphi(n)) + ... \varphi(n) * (\varphi(1) + \varphi(2) + ... \varphi(n)) =
```

 $= (\varphi(1) + \varphi(2) + \dots \varphi(n))^2$

Let's implement a sieve that will calculate all values of the Euler function from 1 to 10^4 and put them into the array fi. Let's fill in the array of partial sums sum[i] = $\varphi(1) + \varphi(2) + \dots \varphi(i)$. Next, for each input value of n, print sum[n] * sum[n].

Consider the arrays with values of Euler function fi and the array of partial sums sum:

	i	1	2	3	4	5	6	7	8	9	10
	φ(<i>i</i>)	1	1	2	2	4	2	6	4	6	4
SU	ım(<i>i</i>)	1	2	4	6	10	12	18	22	28	32

For n = 10 the answer is

 $(\varphi(1) + \varphi(2) + \dots \varphi(10))^2 = \text{sum}[10]^2 = 32^2 = 1024$

Function *FillEuler* filles the array fi[*i*] with values of Euler function: fi[*i*] = $\varphi(i)$ (1 $\leq i < MAX$).

```
void FillEuler(void)
{
    int i, j;
```

Initialize $\varphi(i) = i$.

}

for (i = 0; i < MAX; i++) fi[i] = i; for (i = 2; i < MAX; i++) if (fi[i] == i)

Number *i* is prime. Iterate through all values of j > i for which *i* is a prime divisor.

for (j = i; j < MAX; j += i)</pre>

If *i* is a prime divisor of *j*, then $\varphi(j) = \varphi(j) * (1 - 1 / i) = \varphi(j) - \varphi(j) / i$.

fi[j] -= fi[j] / i;

Consider an example. Initialize $\varphi(i) = i$:

i		1	2	3	4	5	6	7	8	9	10	11	12
φ(i)	1	2	3	4	5	6	7	8	9	10	11	12

Start the *for* loop from i = 2. fi[2] = 2, so 2 is prime.

Start *for j* loop, j = 2, 4, 6, 8, 10, 12, recalculate fi[j] = fi[j] * (1 - 1 / 2) = fi[j] / 2.

•	U	1 . 0							- 47 -	-	· ·		,
	i	1	2	3	4	5	6	7	8	9	10	11	12
	φ (i)	1	1	3	2	5	3	7	4	9	5	11	6

Next value of i = 3. fi[3] = 3, so 3 is prime. Start *for j* loop, j = 3, 6, 9, 12, recalculate fi[*j*] = fi[*j*] * (1 - 1 / 3) = fi[j] * 2 / 3.

i	1	2	3	4	5	6	7	8	9	10	11	12
φ(i)	1	1	2	2	5	2	7	4	6	5	11	4

Next value of *i* for which fi[i] = i, is 5 (5 is prime).

Start for j loop, j = 5, 10, recalculate fi[j] = fi[j] * (1 - 1 / 5) = fi[j] * 4 / 5.

0	1 0					-0 -	-0			,	-0 -	
i	1	2	3	4	5	6	7	8	9	10	11	12
φ (i)	1	1	2	2	4	2	7	4	6	4	11	4

Next value of *i* for which fi[i] = i, is 7 (7 is prime).

Start *for j* loop, j = 7, recalculate fi[j] = fi[j] * (1 - 1 / 7) = fi[j] * 6 / 7.

v	v	1.0							`````				
	i	1	2	3	4	5	6	7	8	9	10	11	12
	φ (i)	1	1	2	2	4	2	6	4	6	4	11	4

Next value of *i* for which fi[i] = i, is 11 (11 is prime).

Start for j loop, j = 11, recalculate fi[j] = fi[j] * (1 - 1 / 11) = fi[j] * 10 / 11.

5	<u>j</u> r	$\mathcal{P}_{\mathcal{P}}$, 1000										
	i	1	2	3	4	5	6	7	8	9	10	11	12	
	φ (i)	1	1	2	2	4	2	6	4	6	4	10	4	

E-OLYMP <u>1128. Longge's problem</u> Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes:

Given an integer *n* ($1 < n < 2^{31}$), you are to calculate $\sum \text{gcd}(i, n)$ for all $1 \le i \le n$.

"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.

► **Theorem.** If the function f(n) is multiplicative, then the summation function $S_f(n) = \sum f(d)$ is also multiplicative.

Proof. Let $x, y \in N$, where x and y are coprime. Let $x_1, x_2, ..., x_k$ be all divisors of x. Let $y_1, y_2, ..., y_m$ be all divisors of y. Then $GCD(x_i, y_j) = 1$, and all possible products x_iy_j give all divisors of xy. Then

$$\mathbf{S}_{f}(x) * \mathbf{S}_{f}(y) = \sum_{i=1}^{k} f(x_{i}) * \sum_{j=1}^{m} f(y_{j}) = \sum_{i,j} f(x_{i})f(y_{j}) = \sum_{i,j} f(x_{i}y_{j}) = \mathbf{S}_{f}(x_{j})$$

Corollary. Consider the function f(n) = GCD(n, c), where *c* is a constant. If *x* and *y* are coprime, then f(x * y) = GCD(x * y, c) = GCD(x, c) * GCD(y, c) = f(x) * f(y). Therefore the function f(n) = GCD(n, c) is multiplicative.

Let
$$g(n) = \sum_{i=1}^{n} HO \square(i, n)$$
. Then

$$g(p_1^{a_1}p_2^{a_2}...p_k^{a_k}) = g(p_1^{a_1}) * g(p_2^{a_2}) * ... * g(p_k^{a_k})$$

Theorem. For any prime p and positive integer a holds the relation: $g(p^a) = (a + 1)p^a - ap^{a-1}$

For
$$a = 1$$
 we have:
 $g(p) = GCD(1, p) + GCD(2, p) + ... + GCD(p, p) = (p-1) + p = 2p - 1$

Similarly for a = 2:

$$g(p^{2}) = \begin{cases} GCD(1,p^{2})+ & GCD(2,p^{2})+ & \dots & GCD(p,p^{2})+ \\ GCD(p+1,p^{2})+ & GCD(p+2,p^{2})+ & \dots & GCD(2p,p^{2})+ \\ GCD(2p+1,p^{2})+ & GCD(2p+2,p^{2})+ & \dots & GCD(3p,p^{2})+ \\ & \ddots & \ddots & & \\ GCD((p-1)p+1,p^{2})+ & GCD((p-1)p+2,p^{2})+ & \dots & GCD(p^{2},p^{2}) \end{cases} =$$

$$= (1 + 1 + \dots + 1 + p) + (1 + 1 + \dots + 1 + p) + \dots + (1 + 1 + \dots + 1 + p^2) =$$

$$= (p - 1 + p) * (p - 1) + (p - 1 + p^2) = (2p - 1) * (p - 1) + (p^2 + p - 1) = (2p^2 - 2p - p + 1 + (p^2 + p - 1)) = (2p^2 - 2p - p + 1 + (p^2 + p - 1)) = (2p^2 - 2p)$$

Lemma. If *d* is a divisor of *n*, then there are exactly $\varphi(n/d)$ numbers *i* such that GCD(i, n) = d.

• Obviously *i* must be divisible by *d*, let i = dj. Then

 $\operatorname{GCD}(i, n) = \operatorname{GCD}(dj, n) = d * \operatorname{GCD}(j, n / d)$

If the last expression is equal to *d*, then GCD(j, n / d) = 1. The number of such *j* that GCD(j, n / d) = 1 is $\varphi(n / d)$.

Example. The number of such *i* that GCD(i, 24) = 3 is $\varphi(8) = 4$.

GCD(j, 8) = 1 for $j \in \{1, 3, 5, 7\}$, therefore GCD(i, 24) = 3 for $i \in \{3, 9, 15, 21\}$ (we have i = 3j).

Theorem.

$$g(n) = \sum_{i=1}^{n} GCD(i,n) = n \sum_{d|n} \frac{\varphi(d)}{d}$$

According to the above lemma, the number of pairs (i, n) for which GCD(i, n) = e, is exactly $\varphi(n/e)$. Replacing n/e = d, we get:

$$g(n) = \sum_{e|n} e \varphi\left(\frac{n}{e}\right) = \sum_{d|n} \frac{n}{d} \varphi(d) = n \sum_{d|n} \frac{\varphi(d)}{d}$$

Example. Let n = 6.

i	1	2	3	4	5	6
GCD(i,6)	1	2	3	2	1	6

Then $g(6) = \sum_{i=1}^{6} GCD(i,6) =$ = GCD(1, 6) + GCD(2, 6) + GCD(3, 6) + GCD(4, 6) + GCD(5, 6) + GCD(6, 6) == 1 + 2 + 3 + 2 + 1 + 6 = 15In the same time g(6) = g(2) * g(3) =(GCD(1, 2) + GCD(2, 2)) * (GCD(1, 3) + GCD(2, 3) + GCD(3, 3)) =(1 + 2) * (1 + 1 + 3) = 3 * 5 = 15

$$(1+2) * (1+1+3) = 3 * 5 = 15$$

Compute g(6) using the formula $g(n) = n \sum_{d \in \mathcal{D}} \frac{\varphi(d)}{d}$: $g(6) = 6\sum_{d \in \mathcal{O}} \frac{\varphi(d)}{d} = 6 \cdot \left(\frac{\varphi(1)}{1} + \frac{\varphi(2)}{2} + \frac{\varphi(3)}{3} + \frac{\varphi(6)}{6}\right) =$ $= 6\varphi(1) + 3\varphi(2) + 2\varphi(3) + \varphi(6) = 6 + 3 + 4 + 2 = 15$

Let's calculate g(6) based on the multiplicativity of the function f(x) = GCD(x, n): g(6) = g(2) * g(3) = (2*2 - 1) * (2*3 - 1) = 3 * 5 = 15

Exam	Example. Let $n = 12$. Then $g(12) = \sum_{i=1}^{12} GCD(i, 12) = 1 + 2 + 3 + 4 + 1 + 6 + 1 + 4 + 3 + 2 + 1 + 12 = 40$													
	i				4						10	11	12	
	НОД(i,12)	1	2	3	4	1	6	1	4	3	2	1	12	

In the same time g(12) = g(4) * g(3) =(GCD(1, 4) + GCD(2, 4) + GCD(3, 4) + GCD(4, 4)) ** (GCD(1, 3) + GCD(2, 3) + GCD(3, 3)) =(1+2+1+4) * (1+1+3) = 8 * 5 = 40

Compute g(12) using the formula $g(n) = n \sum_{d \mid n} \frac{\varphi(d)}{d}$: $g(12) = 12\sum_{d \le 2} \frac{\varphi(d)}{d} = 12 \cdot \left(\frac{\varphi(1)}{1} + \frac{\varphi(2)}{2} + \frac{\varphi(3)}{3} + \frac{\varphi(4)}{4} + \frac{\varphi(6)}{6} + \frac{\varphi(12)}{12}\right) = 0$

$$= 12\varphi(1) + 6\varphi(2) + 4\varphi(3) + 3\varphi(4) + 2\varphi(6) + \varphi(12) =$$

= 12 + 6 + 8 + 6 + 4 + 4 = 40

The divisors of 12 are: 1, 2, 3, 4, 6, 12. The number of *i* such that GCD(i, 12) = d equals to $\varphi(12/d)$. For example GCD(i, 12) = 3 holds for $\varphi(12/3) = \varphi(4) = 2$ different *i*, namely for *i* = 3, 9.

Let's calculate g(12) based on the multiplicativity of the function f(x) = GCD(x, n): g(12) = g(2²) * g(3) = (3 * 2² - 2 * 2) * (2*3 - 1) = 8 * 5 = 40

Function *euler* computes the Euler function.

```
long long euler(long long n)
{
    long long i, result = n;
    for (i = 2; i * i <= n;i++)
    {
        if (n % i == 0) result -= result / i;
        while (n % i == 0) n /= i;
    }
    if (n > 1) result -= result / n;
    return result;
}
```

The main part of the program. Read value of *n*. Compute the value g(n) by the formula $\sum_{e|n} e\varphi\left(\frac{n}{e}\right)$. Search for all divisors of *n* among the numbers from 1 to $\lfloor\sqrt{n}\rfloor$. If *i* is a divisor of *n*, then n / i will be also the divisor of *n*. Therefore, for each found divisor $i \leq \lfloor\sqrt{n}\rfloor$ we must add to result *res* the value $i\varphi\left(\frac{n}{i}\right) + \frac{n}{i}\varphi(i)$. If *n* is a full square, i = sq $= \lfloor\sqrt{n}\rfloor$, then $i\varphi\left(\frac{n}{i}\right) = \frac{n}{i}\varphi(i)$ and two identical terms will be added to the *res* sum.

Therefore we'll subtract one of them from res during the initialization of the variable.

```
while(scanf("%lld", &n) == 1)
{
    sq = (long long)sqrt(1.0*n);
    res = (sq * sq == n) ? -sq * euler(sq) : 0;
    for(i = 1; i <= sq; i++)
        if(n % i == 0) res = res + i * euler(n/i) + (n / i) * euler(i);
    printf("%lld\n", res);
}</pre>
```

E-OLYMP <u>**1129.** GCD Extreme II</u> For a given number n calculate the value of G, where

$$\mathbf{G} = \sum_{i=1}^{i < n} \sum_{j=i+1}^{j \leq n} \mathbf{GCD}(i, j)$$

Here GCD(i, j) means the greatest common divisor of integers *i* and *j*.

For those who have trouble understanding summation notation, the meaning of G is given in the following code:

$$G = 0;$$

for (i = 1; i < n; i++)
for (j = i + 1; j <= n; j++)
{
G += GCD(i, j);
}
$$Let d[k] = \sum_{i=1}^{i < k} \sum_{j=i+1}^{j \le k} GCD(i, j).$$

For example d[2] = $\sum_{i=1}^{i < 2} \sum_{j=i+1}^{j \le 2} GCD(i, j) = \sum_{j=2}^{j \le 2} GCD(1, j) = GCD(1, 2) = 1.$
You can see that

$$\mathbf{d}[k] = \sum_{i=1}^{i < k} \sum_{j=i+1}^{j \le k} \operatorname{GCD}(i, j) = \sum_{i=1}^{i < k-1} \sum_{j=i+1}^{j \le k-1} \operatorname{GCD}(i, j) + \sum_{i=1}^{i < k} \operatorname{GCD}(i, k) = \mathbf{d}[k-1] + \sum_{i=1}^{i < k} \operatorname{GCD}(i, k)$$

d[k-1] equals to the sum of GCD over all

(1,2)										
(1,3)	(2,3)									
(1,4)	(2,4)	(3,4)								
(1,k-1)	(2,k-1)	(3,k-1)		(k-2,k-1)						
(1,k)	(2,k)	(3,k)		(k-2,k)	(k-1,k)					

d[k] equals to sum of GCD for all pairs (i, j) $\frac{1}{k-1}$

d[k] = d[k-1] +
$$\sum_{i=1}^{k-1} GCD(i,k)$$

It remains to show how to calculate the value of $\sum_{i=1}^{i < k} \text{GCD}(i,k)$ faster than usual summation.

Lema. Let *n* is divisible by *d* and GCD(x, n) = d. Then x = dk for some positive integer *k*. From the relation GCD(dk, n) = d it follows that $GCD\left(k, \frac{n}{d}\right) = 1$.

Theorem. Let $f(n) = \sum_{i=1}^{n} \text{GCD}(i,n)$. Then $f(n) = \sum_{d|n} d \cdot \varphi\left(\frac{n}{d}\right)$ for all divisors *d* of number *n*. $\varphi(n)$ indicates here the Euler function.

Proof. The number of such *i*, for which GCD(i, n) = 1, equals to $\varphi(n)$. The number of such *i* $(i \le n)$, for which GCD(i, n) = d (*d* is a divisor of *n*, i = dk), equals to the number of such k ($k \le \frac{n}{d}$), for which $GCD\left(k, \frac{n}{d}\right) = 1$ or $\varphi\left(\frac{n}{d}\right)$. The value of GCD(i, n) can be only the divisors of *n*. To find the value f(n) it remains to sum the values $d \cdot \varphi\left(\frac{n}{d}\right)$ over all divisors *d* of *n*.

Example. Consider the direct calculation: $f(6) = \sum_{i=1}^{6} GCD(i, 6) = GCD(1, 6) + GCD(2, 6) + GCD(3, 6) + GCD(4, 6) + GCD(5, 6) + GCD(6, 6) = 1 + 2 + 3 + 2 + 1 + 6 = 15.$

Consider the calculation using the formula: $f(6) = \sum_{d \mid 6} d \cdot \varphi\left(\frac{6}{d}\right) = 1 \cdot \varphi\left(\frac{6}{1}\right) + 2 \cdot \varphi\left(\frac{6}{2}\right) + 3 \cdot \varphi\left(\frac{6}{3}\right) + 6 \cdot \varphi\left(\frac{6}{6}\right) = 1 \cdot \varphi(6) + 2 \cdot \varphi(3) + 3 \cdot \varphi(2) + 6 \cdot \varphi(1) = 2 + 4 + 3 + 6 = 15$

In the first and in the second case 15 is the sum of two units $(1 \cdot \varphi(6))$, two doules $(2 \cdot \varphi(3))$, one triple $(3 \cdot \varphi(2))$ and one sextuple $(6 \cdot \varphi(1))$.

Declare the arrays. fi[*i*] stores the value of the Euler function $\varphi(i)$.

#define MAX 4000010
long long d[MAX], fi[MAX];

The function *FillEuler* fills the array fi so that $fi[i] = \varphi(i)$, i < MAX.

```
void FillEuler(void)
{
```

Initially set the value of fi[*i*] equal to *i*.

for(i = 1; i < MAX; i++) fi[i] = i;</pre>

Each even number *i* has a prime divisor p = 2. To speed up the function working time, process it separately. For each even number *i* set fi[i] = fi[i] * (1 - 1 / 2) = fi[i] / 2.

for(i = 2; i < MAX; i+=2) fi[i] /= 2;</pre>

Enumerate all the possible odd divisors i = 3, 5, 7, ...

for(i = 3; i < MAX; i+=2)
if(fi[i] == i)</pre>

If fi[i] = i, then the number *i* is prime. The number *i* is a prime divisor for any *j*, represented in the form k * i for any positive integer *k*.

for(j = i; j < MAX; j += i)</pre>

If *i* is a prime divisor of *j*, then set fi(j) = fi(j) * (1 - 1/i).

fi[j] -= fi[j]/i;

}

Before calling the function f the values d[*i*] already contain $\varphi(i)$. The body of the function f adds to d[*j*] the values so that when the function finishes its work, the value d[*j*] contains $\sum_{j=1}^{j-1} \text{GCD}(i, j)$ according to the formula given in the theorem.

```
void f(void)
{
    int i, SQRT_MAX = sqrt(1.0*MAX);
    for(i = 2; i <= SQRT_MAX; i++)
    {
        d[i*i] += i * fi[i];
    }
}</pre>
```

The number *i* is a divisor of *j*. So we need to add to d[*j*] the value of $i \cdot \varphi\left(\frac{j}{i}\right)$. Since the number *j* has also a divisor j / i, add to d[*j*] the value of $\frac{j}{i} \cdot \varphi\left(\frac{j}{j/i}\right) = \frac{j}{i} \cdot \varphi(i)$. If $i^2 = j$, add to d[*j*] not two terms, but only one $i \cdot \varphi\left(\frac{j}{i}\right) = i \cdot \varphi(i)$.

// for(j = i * i + i; j < MAX; j += i)
// d[j] += i * fi[j / i] + j / i * fi[i];</pre>

We can avoid integer division in implementation. To do this note, that since the value of the variable *j* is incremented each time by *i*, then the value j / i will be increase by one in a loop. Set initially k = j / i = (i * i + i) / i = i + 1 and then increase *k* by 1 in each iteration.

for(j = i * i + i, k = i + 1; j < MAX; j += i, k++)
d[j] += i * fi[k] + k * fi[i];</pre>

Its sufficiently to continue the loop by *i* till \sqrt{MAX} , because if *i* is a divisor of *j* and $i > \sqrt{MAX}$, then considering the fact that $j / i < \sqrt{MAX}$ we can state that the divisor *i* of the number *j* was taken in account when we considered the divider j / i.

}

d[*i*]

}

The main part of the program. Initialize the arrays. Let $d[i] = \varphi(i)$.

4

2

memset(d,0,sizeof(d));
FillEuler();
memcpy(d,fi,sizeof(fi));

0

1

i	1	2	3	4	5	6	7	8	9	10
d[<i>i</i>]	0	1	2	2	4	2	6	4	6	4
f();										
i	1	2	3	4	5	6	7	8	9	10
	-	-	5	•	5	0	,	0		10

4

9

6

12

12

17

for(i = 3; i < MAX; i++)
d[i] += d[i-1];</pre>

i	1	2	3	4	5	6	7	8	9	10
d [<i>i</i>]	0	1	3	7	11	20	26	38	50	67

while(scanf("%lld",&n),n)
 printf("%lld\n",d[n]);

E-OLYMP 5141. LCM sum Given *n*, calculate the sum LCM(1, *n*) + LCM(2, *n*) + ... + LCM(*n*, *n*), where LCM(*i*, *n*) denotes the Least Common Multiple of the integers *i* and *n*.

Let
$$S = \sum_{i=1}^{n} LCM(i,n) = \sum_{i=1}^{n-1} LCM(i,n) + LCM(n,n) = \sum_{i=1}^{n-1} LCM(i,n) + n$$
, wherefrom
 $S - n = LCM(1, n) + LCM(2, n) + \ldots + LCM(n - 1, n)$

Rearrange the terms in the right side in reverse order and write the equality in the form

$$S - n = LCM(n - 1, n) + ... + LCM(2, n) + LCM(1, n)$$

Let's add two equalities:

$$2(S - n) = (LCM(1, n) + LCM(n - 1, n)) + \dots + (LCM(n - 1, n) + LCM(1, n))$$

Consider the expression in parentheses:

$$LCM(i, n) + LCM(n-i, n) = \frac{in}{GCD(i, n)} + \frac{(n-i)n}{GCD(n-i, n)}$$

Note that the denominators of the last two terms are equal: GCD(i, n) = GCD(n - i, n), hence

$$\frac{in}{GCD(i,n)} + \frac{(n-i)n}{GCD(n-i,n)} = \frac{in+(n-i)n}{GCD(i,n)} = \frac{n^2}{GCD(i,n)}$$

So

$$2(S-n) = \sum_{i=1}^{n-1} \frac{n^2}{GCD(i,n)} = n \sum_{i=1}^{n-1} \frac{n}{GCD(i,n)}$$

GCD(i, n) = d can take only the values of divisors of the number *n*, while the number of *i* for which the specified equality holds is $\varphi(n/d)$. Hence

$$2(\mathbf{S}-n) = n \sum_{i=1}^{n-1} \frac{n}{GCD(i,n)} = n \sum_{\substack{d \mid n \\ d \neq n}} \frac{n}{d} \cdot \varphi\left(\frac{n}{d}\right) = n \sum_{\substack{d \mid n \\ d \neq 1}} d \cdot \varphi(d) = n \left(\sum_{\substack{d \mid n \\ d \neq 1}} d \cdot \varphi(d) - 1\right)$$

The second equality is true because if *d* is a divisor of *n*, then n / d is also a divisor of *n*. Moreover, if $d \neq n$, then $n / d \neq 1$. The last equality is valid, since the summand 1 * $\varphi(1) = 1$ is included in the sum. It remains to extract the value S from the equation:

$$2(\mathbf{S}-n) = n \left(\sum_{d|n} d \cdot \varphi(d) - 1 \right),$$

$$2\mathbf{S} - 2n = n \sum_{d|n} d \cdot \varphi(d) - n$$
, $\mathbf{S} = \frac{n}{2} \left(\sum_{d|n} d \cdot \varphi(d) + 1 \right)$