Euler function

Group

A *group* $G = \langle S, \degree \rangle$ is a pair, where

- S is a finite or infinite set of elements;
- \bullet \circ is a binary operation (called the group operation) that together satisfy the four fundamental properties of *closure*, *associativity*, *the identity property*, and *the inverse property*.

1. **Closure**: If *a* and *b* are two elements in G, then *a* º *b* is also in G.

2. **Associativity**: The defined operation \circ is associative, i.e., for all *a*, *b*, *c* \in G we have: $(a^{\circ}b)^{\circ}c = a^{\circ}(b^{\circ}c)$.

3. **Identity**: There is an identity element I (a.k.a. 1, E or *e*) such that I \circ *a* = *a* \circ I = *a* for every element $a \in G$.

4. **Inverse**: There must be an *inverse* (a.k.a. *reciprocal*) of each element. Therefore, for each element *a* of G, the set contains an element $b = a^{-1}$ such that

 $a^{\circ} a^{-1} = a^{-1} {\circ} a = I$

Let N be a set of positive integers. Then:

- <N, +> is **not** a group, there is no *identity* element.
- <N ∪ {0}, +> is **not** a group, *identity* = 0, but there is no *inverse* element.

Let Z be a set of integers. Then:

• $\langle Z, + \rangle$ is a group, *identity* = 0, 3^{-1} = -3, -3⁻¹ = 3.

 $\bullet \leq Z$, \Rightarrow is **not** a group, *identity* = 1, but there is no *inverse* element.

Let Q be a set of fractions. Then:

 $\bullet \quad < 0, \cdot \rangle$ is a group, *identity* = 1, 3^{-1} = 1/3, $2/7^{-1}$ = 7/2.

Let M be a set of matrices. Then:

 \bullet $\leq M \setminus (0)$, \Rightarrow is a group, *identity* = E, each matrix has an *inverse*. Matrix multiplication is *associative*, but not *commutative*.

Complete residue system

A subset S of the set of integers is called a *complete residue system* modulo *n* if

- no two elements of S are congruent modulo *n*;
- S contains *n* elements:

For example, a complete residue system modulo 5 is {3, 4, 5, 6, 7}, which is equivalent to $\{0, 1, 2, 3, 4\}.$

 $Z_n = \{0, 1, 2, \ldots, n-1\}$ is a complete residue system consisting of minimal nonnegative residues.

 Z_{n} , + _{mod *n*} is a group. For example, $Z_{5} = \{0, 1, 2, 3, 4\}$. **Closure**: $3 + 4 = 2$ because $(3 + 4)$ mod $5 = 2$. **Associativity**: $(3 + 4) + 2 = 3 + (4 + 2) = 4$. **Identity**: $I = 0$.

Inverse: $3^{-1} = 2$ because $3 + 2 = 0$ (mod 5), $4^{-1} = 1$.

Reduced residue system

A subset Z*n** of the set of integers is called a *reduced residue system* modulo *n* if

- Each element in Z_n^* is no more than *n*;
- Each element in Z_n^* is coprime with *n*;

 $\langle Z_n^*, *_{mod n} \rangle$ is a group.

For example, $Z_{10}^* = \{1, 3, 7, 9\}$, $Z_{12}^* = \{1, 5, 7, 11\}$. Product of any numbers from the set modulo *n* belongs to the same set:

If *p* is prime, then $Z_p^* = \{1, 2, 3, ..., p-1\}$. All positive integers less than *p* belong to Z_p^* because they are coprime with *p*. For example, $Z_7^* = \{1, 2, 3, 4, 5, 6\}$.

The cardinality of the set Z_n^* equals to **Euler function** $\varphi(n)$: $|Z_n^*| = \varphi(n)$

Below the **properties** of the Euler function are given:

- if *p* is prime, then $\varphi(p) = p 1$ and $\varphi(p^a) = p^a * (1 1/p)$ for any *a*.
- if *m* and *n* are coprime, then $\varphi(m * n) = \varphi(m) * \varphi(n)$.
- if $n = p_1^{a_1} p_2^{a_2} ... p_k^{a_k}$, the Euler function is calculated using the next formula:

$$
\varphi(n) = n * (1 - 1/p_1) * (1 - 1/p_2) * ... * (1 - 1/p_k)
$$

For example,

$$
\varphi(20) = \varphi(2^2 * 5) = 20 * (1 - 1/2) * (1 - 1/5) = 20 * 1/2 * 4/5 = 8,
$$

\n
$$
\varphi(12) = \varphi(2^2 * 3) = 12 * (1 - 1/2) * (1 - 1/3) = 12 * 1/2 * 2/3 = 4,
$$

\n
$$
\varphi(10) = \varphi(2 * 5) = 10 * (1 - 1/2) * (1 - 1/5) = 10 * 1/2 * 4/5 = 4
$$

Function *euler* finds the value of $\varphi(n)$.

```
int euler(int n)
{
```
Initialize *result* with *n*.

int i, result = n;

Iterate over all prime divisors *i* of *n*.

for(i = 2; i * i <= n; i++) $\{$

If *i* is a prime divisor of *n*, calculate

 $result = result * (1 - 1 / i) = result - result / i$

if (n $\frac{1}{6}$ i == 0) result -= result / i;

Remove all divisors *i* from *n*.

```
while (n \frac{1}{6} i == 0) n /= i;
 }
```
If $n > 1$, then initially *n* contained a prime divisor greater than \sqrt{n} . For example, number 10 = 2 $*$ 5 contains prime divisor 5, greater than $\sqrt{10}$. Take this divisor into account when calculating the result.

```
if (n > 1) result -= result / n;
  return result;
}
```
E-OLYMP [339. Again irreducible](https://www.e-olymp.com/en/problems/339) The fraction *m* / *n* is called regular irreducible, if $0 \lt m \lt n$ and GCD $(m, n) = 1$. Find the number of regular irreducible fractions with denominator *n*.

► The number of regular irreducible fractions with denominator *n* equals to Euler's function $\varphi(n)$. For $n = 12$ we have the following regular irreducible fractions:

$$
\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}
$$

Consider the set of all regular fractions with the denominator 12: 12 $\frac{0}{2}, \frac{1}{12}$ $\frac{1}{2}$, $\frac{2}{12}$ $\frac{2}{2}$, $\frac{3}{12}$ $\frac{3}{2}, \frac{4}{12}$ $\frac{4}{1}$, 12 $\frac{5}{12}$, $\frac{6}{12}$ $\frac{6}{2}$, $\frac{7}{12}$ $\frac{7}{12}$, $\frac{8}{12}$ $\frac{8}{2}, \frac{9}{12}$ $\frac{9}{12}$, $\frac{10}{12}$ $\frac{10}{12}, \frac{11}{12}$ 11 After simplifying, they will look like: 1 $\frac{0}{1}$, $\frac{1}{12}$ $\frac{1}{2}, \frac{1}{6}$ $\frac{1}{6}, \frac{1}{4}$ $\frac{1}{4}$, $\frac{1}{3}$ $\frac{1}{3}, \frac{5}{12}$ $\frac{5}{2}$, $\frac{1}{2}$ $\frac{1}{2}$, $\frac{7}{12}$ $\frac{7}{2}$, 3 $\frac{2}{3}, \frac{3}{4}$ $\frac{3}{4}$, $\frac{5}{6}$ $\frac{5}{6}, \frac{11}{12}$ 11 Let's group the fractions by their denominators: 1 $\frac{0}{1}$, $\frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{3}$ $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}$, $\frac{1}{4}$ $\frac{1}{4}$, $\frac{3}{4}$ $\frac{3}{4}$, $\frac{1}{6}$ $\frac{1}{6}, \frac{5}{6}$ $\frac{5}{6}, \frac{1}{12}$ $\frac{1}{2}$, $\frac{5}{12}$ $\frac{5}{12}$, $\frac{7}{12}$ $\frac{7}{12}$, $\frac{11}{12}$ 11 Among the denominators, every divisor d of 12 occurs along with all $\varphi(d)$ of its numerators. All denominators are divisors of 12. Hence

$$
\varphi(1) + \varphi(2) + \varphi(3) + \varphi(4) + \varphi(6) + \varphi(12) = 12
$$

If we start with a series of irreducible fractions $0/m$, $1/m$, ..., $(m-1)/m$, we can get the equality:

$$
n=\sum_{d|n}\varphi(d)
$$

E-OLYMP [1563. Send a table](https://www.e-olymp.com/en/problems/1563) Jimmy have to calculate a function $f(x, y)$ where *x* and *y* are both integers in the range [1, *n*]. When he knows $f(x, y)$, he can easily derive $f(k*x, k*y)$, where *k* is any integer from it by applying some simple calculations involving $f(x, y)$ and k .

Note that the function *f* is not symmetric, so $f(x, y)$ can not be derived from $f(y, x)$.

For example if $n = 4$, he only needs to know the answers for 11 out of the 16 possible input value combinations:

The other 5 can be derived from them:

- $f(2, 2)$, $f(3, 3)$ and $f(4, 4)$ from $f(1, 1)$;
- $f(2, 4)$ from $f(1, 2)$;
- $f(4, 2)$ from $f(2, 1)$;

For the given value of *n* find the minimum number of function values Jimmy needs to know to compute all n^2 values $f(x, y)$.

 \blacktriangleright Let res(*i*) be the minimum required number of known values of $f(x, y)$, where *x*, $y \in \{1, ..., i\}$. Obviously, $res(1) = 1$, since for $n = 1$ it is enough to know $f(1, 1)$.

Let the value of res(*i*) is known. For $n = i + 1$ we must find the values

The values $f(j, i + 1)$ and $f(i + 1, j)$, $j \in \{1, ..., i + 1\}$ can be derived from the known values if $GCD(i, i + 1) > 1$, that is, if the numbers *j* and $i + 1$ are not coprime. Therefore, it is necessary to know all such $f(j, i + 1)$ and $f(i + 1, j)$, for which *j* and $i + 1$ are coprime. The number of such values is $2 * \varphi(i + 1)$, where φ is Euler's function. Thus

res(1) = 1,
res(*i* + 1) = res(*i*) + 2 *
$$
\varphi
$$
(*i* + 1), *i* > 1

Let's find the values of res(*i*) for some values of *i*:

res(1) = 1,
res(2) = res(1) + 2 *
$$
\varphi
$$
(2) = 1 + 2 * 1 = 3,

$$
res(3) = res(2) + 2 * \varphi(3) = 3 + 2 * 2 = 7,
$$

Euler's theorem. If *a* and *n* are coprime, then $a^{\varphi(n)} \equiv 1 \pmod{n}$. $|Z_n^*| = \varphi(n)$

Proof. Let $Z_n^* = \{r_1, ..., r_k\}$, where $k = \varphi(n)$. Then if we take any $a \in Z_n^*$ and find all possible products $a * r_i$, we get a set { r_1 ', ..., r_k '} that is just a permutation of { r_1 , \ldots , r_k . Consider the system of congruence equations:

$$
ar_1 \equiv r_1' \pmod{n},
$$

\n
$$
ar_2 \equiv r_2' \pmod{n},
$$

\n... ,
\n
$$
ar_k \equiv r_k' \pmod{n}
$$

Multiply the equations:

 $a^k * r_1 * ... * r_k \equiv r_1' * ... * r_k' \pmod{n}$

Since the products r_1 * ... * r_k and r_1 ' * ... * r_k ' are equal and coprime modulo *n*, we'll divide the equality by this product. We get

$$
a^k \equiv 1 \pmod{n}
$$

Since $k = \varphi(n)$, we have

 $a^{\varphi(n)} \equiv 1 \pmod{n}$

Fermat's theorem (a special case of Euler's theorem). If *p* is prime, $a \in Z_p^*$, then

$$
a^{p-1} \equiv 1 \pmod{p}
$$

Corollary. If we multiply both sides of $a^{p-1} \equiv 1 \pmod{p}$ by *a*, we obtain $a^p \equiv a \pmod{p}$

Corollary. $a^b \pmod{c} = a^{b'} \pmod{c}$, where $b' = b \bmod{\varphi(c)}$. **Proof.** Let $b = k\varphi(c) + b'$.

Then
$$
a^b \pmod{c} = a^{k\varphi(c)+b'} \pmod{c} = (a^{\varphi(c)})^k \cdot a^{b'} \pmod{c} = a^{b'} \pmod{c}
$$
.

Example. Find the value of 2^{100} mod 17. Since $\varphi(17) = 16$, $2^{100} \mod 17 = 2^{100} \mod 17 = 2^4 \mod 17 = 16$.

Find the value of 2^{1000} mod 100. Since $\varphi(100) = \varphi(2^{2} * 5^{2}) = 100 * (1 - 1/2) * (1 - 1/5) = 100 * 1/2 * 4/5 = 40,$ 2^{1000} mod $100 = 2^{100 \text{ mod } 40}$ mod $100 = 2^{20}$ mod $100 = 1048576$ mod $100 = 76$.

Example. Let's find an inverse for each element from $Z_{10}^* = \{1, 3, 7, 9\}$. From the Euler theorem we have $a^{\varphi(10)} \equiv 1 \pmod{10}$ or $a^4 \equiv 1 \pmod{10}$, $a * a^3 \equiv 1 \pmod{10}$, so

So
$$
1^{-1} = 1
$$
, $3^{-1} = 7$, $7^{-1} = 3$, $9^{-1} = 9$.

E-OLYMP [5213. Inverse](https://www.e-olymp.com/en/problems/5213) Prime number *n* is given. The **inverse** number to $i(1 \leq i)$ $\langle n \rangle$ is such number *j* that $i * j = 1 \pmod{n}$. Its possible to prove that for each *i* exists only one inverse. For all possible values of *i* find the inverse numbers.

► Since the number *n* is prime, then by Fermat's theorem i^{n-1} mod $n = 1$ for every $1 \leq i < n$. This equality can be rewritten in the form $(i * i^{n-2})$ mod $n = 1$, whence the inverse of *i* equals to $j = i^{n-2} \mod n$.

Let $n = 5$. Consider the table:

E-OLYMP [9606. Modular division](https://www.e-olymp.com/en/problems/9606) Three positive integers *a*, *b* and *n* are given. Find the value of $a/b \mod n$. You must fund such x that $b * x = a \mod n$.

Since number *n* is prime, then by Fermat's theorem b^{n-1} mod $n = 1$ for every 1 $\leq b < n$. This equality can be rewritten in the form $(b * b^{n-2})$ mod $n = 1$, whence the inverse of *b* equals to $y = b^{n-2} \text{ mod } n$.

Hence $a/b \mod n = a * b^{-1} \mod n = a * y \mod n$.

Consider the sample: compute 4 / 8 mod 13. To do this, solve the equation $8 * x = 4 \mod 13$, wherefrom $x = (4 * 8^{-1}) \mod 13$.

Number 13 is prime, Fermat's theorem implies that 8^{12} mod 13 = 1 or $(8 *$ 8^{11}) mod 13 = 1. Therefore 8^{-1} mod 13 = 8^{11} mod 13 = 5.

Compute the answer: $x = (4 * 8⁻¹) \text{ mod } 13 = (4 * 5) \text{ mod } 13 = 20 \text{ mod } 13 = 7.$

E-OLYMP [9627. a^b^c](https://www.e-olymp.com/en/problems/9627) Find the value of

$$
a^{b^c}mod(10^9+7)
$$

► By Fermat's little theorem $a^{p-1} = 1 \pmod{p}$, where *p* is prime. The number *p* = $10^9 + 7$ is prime. Hence, for example, it follows that $a^{(p-1)*l} = 1 \pmod{p}$ for any number *l*.

To evaluate the expression a^b ^{*b*} c first find $k = b^b c$, then calculate $a^b k$. However, the number $b^{\wedge}c$ is large, we represent it in the form $b^{\wedge}c = (p-1) * l + s$ for some *l* and *s* $\langle p-1.$ Then

 $a^{\wedge}(b^{\wedge}c) \mod p = a^{(p-1)*l+s} \mod p = (a^{(p-1)*l} * a^s) \mod p = a^s \mod p$ It's obvious that $s = b$ ^{\wedge}c mod ($p - 1$). Hence $a^{\wedge}(b^{\wedge}c)$ mod $p = a^{\wedge}(b^{\wedge}c \mod (p-1))$ mod *p*

Let's calculate the value of 3^2 ²/3 mod 7. Module 7 is chosen to be prime. The value of expression is

 $3^{\circ}(2^{\circ}3) \mod 7 = 3^8 \mod 7 = 6561 \mod 7 = (937 * 7 + 2) \mod 7 = 2$

Fermat's theorem implies that 3^6 mod $7 = 1$. Therefore, for any positive integer k $(3^6 \text{ mod } 7)^k = 3^{6k} \text{ mod } 7 = 1$

Since $2^3 = 2^3 = 8$, then $3^8 \text{ mod } 7 = 3^{6 \times 1 + 2} \text{ mod } 7 = 3^2 \text{ mod } 7 = 9 \text{ mod } 7 = 2$

The original expression can also be evaluated as

 $3^{\circ}(2^{\circ}3) \mod 7 = 3^8 \mod 7 = 3^{8} \mod 6 \mod 7 = 3^2 \mod 7 = 9 \mod 7 = 2$

E-OLYMP [1083. Sequence](https://www.e-olymp.com/en/problems/1083) In a sequence of numbers $a_1, a_2, a_3, ...$ the first term is given, and the other terms are calculated using the formula:

 $a_i = (a_{i-1} * a_{i-1}) \mod 10000$

Find the *n*-th term of the sequence.

- \blacktriangleright Let us express the first terms of the sequence in terms of a_1 :
	- $a_2 = a_1^2 \text{ mod } 10000,$
	- $a_3 = a_2^2 \mod 10000 = a_1^4 \mod 10000$,
	- $a_4 = a_3^2 \text{ mod } 10000 = a_2^4 \text{ mod } 10000 = a_1^8 \text{ mod } 10000$

The formula can be rewritten as $a_i = a_{i-1}^2$ mod 10000, whence it follows that to calculate a_n , the number a_1 should be raised to the power 2^{n-1} .

$$
a_n = a_1^{2^n}
$$

Considering that a^b mod $n = a^{b \mod{\varphi(n)}}$ mod *n*, to find the result *res*, the following calculations should be performed:

$$
x = 2^{n-1} \mod \varphi(10000) = 2^{n-1} \mod 4000,
$$

 $res = a_1^x \mod 10000$

E-OLYMP [7807. Happy sum](https://www.e-olymp.com/en/problems/7807) It is known that the number is happy, if its decimal notation contains only fours and sevens. For example, the numbers 4, 7, 47, 7777 and 4744474 are happy.

Let S be the set of happy numbers, no less than *a* and no more than *b*:

$$
S = \{n : a \le n \le b, n \text{ is happy}\}
$$

Calculate the remainder of dividing by 1234567891 the next sum:

 $\sum n^n$

 \blacktriangleright The modulus $p = 1234567891$ is primt. So $n^{p-1} = 1 \pmod{p}$. We have $n^n \pmod{p} = (n \mod p)^{(p-1)+...+(p-1)+(n \mod (p-1))} \pmod{p}$ $(n \mod p)^{n \mod (p-1)} \pmod{p}$

For example 23²³ (mod 5) = (23 mod 5)⁴⁺⁴⁺⁴⁺⁴⁺⁴⁺³ (mod 5) = 3³ (mod 5), because $3^4 \pmod{5} = 1$.

Let modPow(*a*, *n*) = a^n mod *p*. Since $n \le 10^{18}$, then the arguments of modPow(*n*, *n*) wikk have the type *long long* and when multiplying we get overflow. From the above equality we have:

modPow(*n*, *n*) = modPow(*n* mod *p*, *n* mod (*p* – 1)) Now we can pass *int* arguments to the function *modPow*.

To generate happy numbers, it should be noted that if *n* is happy, then numbers $10^{*}n + 4$ and $10^{*}n + 7$ will be also happy.

Recursive generation of happy numbers.

```
void f(long long n)
{
```
As soon as the next generated number *n* becomes greater than *b*, we stop to generate the numbers.

```
 if (n > b) return;
```
Sum up the values n^n only for those happy numbers *n*, for which $a \le n \le b$.

if $(n \ge a)$ res = $(res + modPow(n \& MOD, n \& (MOD - 1))) \& MOD;$

In *n* is a happy number, then numbers $10^*n + 4$ and $10^*n + 7$ will be also happy.

```
f(n * 10 + 4);f(n * 10 + 7);}
```
Generate the happy numbers starting from 0. Calculate the required sum in the *res* variable.

f(0);

E-OLYMP [4742. Number of divisors](https://www.e-olymp.com/en/problems/4742) The integer *n* is given. Find the number of its divisors, excluding divisors *n* and 1.

 \blacktriangleright Let $d(n)$ be the number of divisors of *n*. Obviously, $d(1) = 1$.

Let *p* be prime integer. Then *p* has two divisors: 1 and *p*. Hence $d(p) = 2$.

Let $n = p^k$ be the prime power. Then *n* has $k + 1$ divisors: 1, p, p^2 , p^3 , ..., p^k . So $d(p^k) = k + 1.$

Let $n = p^k q^l$. Consider two sets:

 $P = \{1, p, p^2, p^3, \ldots, p^k\}$ and $Q = \{1, q, q^2, q^3, \ldots, q^l\}$

Any divisor *d* of the number $p^k q^l$ can be represented in the form $x * y$, where $x \in P$, $y \in Q$. Divisor *x* from P can be chosen in $k + 1$ ways, divisor *y* from Q can be chosen in *l* $+ 1$ ways. Hence the divisor $d = x * y$ can be constructed in $(k + 1) * (l + 1)$ ways.

Decompose the number *n* into prime factors: $n = p_1^{a_1} p_2^{a_2} ... p_k^{a_k}$ *k* $p_1^{a_1} p_2^{a_2} ... p_k^{a_k}$. The number of divisors of *n* is

$$
d(n) = (a_1 + 1) * (a_2 + 1) * ... * (a_k + 1)
$$

Factorize the number of $n = 18$:

 $18 = 2 * 3^2$

Therefore

 $d(18) = (1 + 1) * (2 + 1) = 2 * 3 = 6$

Subtracting two divisors (1 and 18), we get the answer: 4 divisors.

Function *CountDivisors* factorize the number *n* and calculates the number of its divisors d(*n*). In the variable *res*, we count the number of divisors of the number *n*. In the *for* loop, when we meet the divisor i of n , in the variable c we calculate the degree with which *i* is included in the number *n*. That is, *c* is the maximum degree for which *n* is divisible by i^c .

```
int CountDivisors(int n)
{
  int c, i, res = 1;
  for(i = 2; i * i \leq n; i++)
\{if (n \frac{6}{5} i == 0)
\left\{\begin{array}{ccc} \end{array}\right\}c = 0;while (n \text{ } 8 \text{ } i == 0) {
          n /= i;
         c++;
 }
       res * = (c + 1); }
   }
 if (n > 1) res *= 2;
   return res;
}
```
E-OLYMP [1564. Number theory](https://www.e-olymp.com/en/problems/1564) For the given positive integer *n* find the number of integers *m*, such that $1 \le m \le n$, $GCD(m, n) \ne 1$ and $GCD(m, n) \ne m$. GCD is an abbreviation for "greatest common divisor".

► From the number *n*, we must subtract the number of coprime numbers with *n*, that equals to the Euler function $\varphi(n)$ (if *m* and *n* are coprime, then $GCD(m, n) = 1$), and the number of its divisors (if *m* is a divisor of *n*, then $GCD(m, n) = m$). In this case, the number 1 will be simultaneously coprime with *n* and a divisor of *n*. Therefore, 1 should be added to the resulting difference.

If $n = p_1^{k_1} p_2^{k_2} ... p_t^{k_t}$ *t* $p_1^{k_1} p_2^{k_2} ... p_t^{k_t}$ is a factorization of *n*, it has $d(n) = (k_1 + 1) * (k_2 + 1) * ... * (k_t)$ $+$ 1) divisors.

Thus, the number of required values of *m* for the given *n* equals to

 $n - \varphi(n) - d(n) + 1$

Let $n = 10$. We have $\varphi(10) = 4$ coprime numbers with 10: 1, 3, 7, 9.

Number 10 has $d(10) = d(2 * 5) = 2 * 2 = 4$ divisors: 1, 2, 5, 10.

The number of integers *m*, such that $1 \le m \le 10$, $GCD(m, 10) \ne 1$ and $GCD(m, 10)$ $\neq m$ is

$$
10 - \varphi(10) - d(10) + 1 = 10 - 4 - 4 + 1 = 3
$$

E-OLYMP [4107. Totient extreme](https://www.e-olymp.com/en/problems/4107) Given the value of *n*, you will have to find the value of H. The meaning of H is given in the following code:

```
H = 0;for (i = 1; i \le n; i++) {
    for (j = 1; j \le n; j++) {
        H = H + totient(i) * totient(j); }
}
```
Totient or *phi* function, $\varphi(n)$ is an arithmetic function that counts the number of positive integers less than or equal to *n* that are relatively prime to *n*. That is, if *n* is a positive integer, then $\varphi(n)$ is the number of integers *k* in the range $1 \leq k \leq n$ for which $GCD(n, k) = 1$.

```
\blacktriangleright Let us rewrite the sum H as follows:
\varphi(1) * \varphi(1) + \varphi(1) * \varphi(2) + \dots \varphi(1) * \varphi(n) +\varphi(2) * \varphi(1) + \varphi(2) * \varphi(2) + \dots \varphi(2) * \varphi(n) +. . .
\varphi(n) * \varphi(1) + \varphi(n) * \varphi(2) + ... \varphi(n) * \varphi(n) =\varphi(1) * (\varphi(1) + \varphi(2) + \dots \varphi(n)) +\varphi(2) * (\varphi(1) + \varphi(2) + \dots \varphi(n)) +
. . .
\varphi(n) * (\varphi(1) + \varphi(2) + \dots \varphi(n)) =
```
= $(\varphi(1) + \varphi(2) + \dots \varphi(n))^2$

Let's implement a sieve that will calculate all values of the Euler function from 1 to 10⁴ and put them into the array fi. Let's fill in the array of partial sums sum[*i*] = $\varphi(1)$ + $\varphi(2)$ + ... $\varphi(i)$. Next, for each input value of *n*, print sum[*n*] * sum[*n*].

Consider the arrays with values of Euler function fi and the array of partial sums sum:

For $n = 10$ the answer is

 $(\varphi(1) + \varphi(2) + \dots \varphi(10))^2 = \text{sum}[10]^2 = 32^2 = 1024$

Function *FillEuler* filles the array fi[*i*] with values of Euler function: fi[*i*] = φ (*i*) (1 $\leq i$ < MAX).

```
void FillEuler(void)
{
   int i, j;
```
Initialize $\varphi(i) = i$.

}

for $(i = 0; i < MAX; i++)$ fi $[i] = i;$ for $(i = 2; i < MAX; i++)$ if $(fi[i] == i)$

Number *i* is prime. Iterate through all values of $j > i$ for which *i* is a prime divisor.

for $(j = i; j < \text{MAX}; j += i)$

If *i* is a prime divisor of *j*, then $\varphi(j) = \varphi(j) * (1 - 1 / i) = \varphi(j) - \varphi(j) / i$.

 f i[j] -= f i[j] / i;

Consider an example. Initialize $\varphi(i) = i$:

Start the *for* loop from $i = 2$. fi[2] = 2, so 2 is prime.

Start *for j* loop, *j* = 2, 4, 6, 8, 10, 12, recalculate fi[*j*] = fi[*j*] * $(1 - 1 / 2) =$ fi[*j*] / 2.

Next value of $i = 3$. fi[3] = 3, so 3 is prime. Start *for j* loop, $j = 3, 6, 9, 12$, recalculate fi[*j*] = fi[*j*] * $(1 - 1 / 3) =$ fi[*j*] * 2 / 3.

	1 2 3 4 5 6 7 8 9 10 11 12						
$ \varphi(i) $ 1 1 2 2 5 2 7 4 6 5 11 4							

Next value of *i* for which fi[*i*] = *i*, is 5 (5 is prime).

Start *for j* loop, *j* = 5, 10, recalculate fi[*j*] = fi[*j*] * (1 – 1 / 5) = fi[*j*] * 4 / 5.

							1 1 2 3 4 5 6 7 8 9 10 11 12
	$ \varphi(i) $ 1 1 2 2 4 2 7 4 6 4					$\vert 11 \vert 4 \vert$	

Next value of *i* for which fi[*i*] = *i*, is 7 (7 is prime).

Start *for j* loop, *j* = 7, recalculate fi[*j*] = fi[*j*] * (1 – 1 / 7) = fi[*j*] * 6 / 7.

.							
	112344567891011112						
$\boxed{\phi(i)}$ 1 1 2 2 4 2 6 4 6 /						4 11 4	

Next value of *i* for which fi[i] = *i*, is 11 (11 is prime).

Start *for j* loop, $j = 11$, recalculate fi[*j*] = fi[*j*] * $(1 - 1 / 11) =$ fi[*j*] * 10 / 11.

E-OLYMP [1128. Longge's problem](https://www.e-olymp.com/en/problems/1128) Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes:

Given an integer *n* (1 < *n* < 2³¹), you are to calculate \sum gcd(*i*, *n*) for all $1 \le i \le n$.

"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.

 \blacktriangleright **Theorem.** If the function $f(n)$ is multiplicative, then the summation function $S_f(n) = \sum f(d)$ is also multiplicative.

$$
\overline{d|n}
$$

Proof. Let $x, y \in N$, where *x* and *y* are coprime. Let $x_1, x_2, ..., x_k$ be all divisors of *x*. Let y_1, y_2, \ldots, y_m be all divisors of *y*. Then $GCD(x_i, y_i) = 1$, and all possible products $x_i y_i$ give all divisors of *xy*. Then

$$
S_f(x) * S_f(y) = \sum_{i=1}^k f(x_i) * \sum_{j=1}^m f(y_j) = \sum_{i,j} f(x_i) f(y_j) = \sum_{i,j} f(x_i y_j) = S_f(xy)
$$

Corollary. Consider the function $f(n) = GCD(n, c)$, where *c* is a constant. If *x* and *y* are coprime, then $f(x * y) = GCD(x * y, c) = GCD(x, c) * GCD(y, c) = f(x) * f(y)$. Therefore the function $f(n) = GCD(n, c)$ is multiplicative.

Let
$$
g(n) = \sum_{i=1}^{n} HO\mathcal{A}(i, n)
$$
. Then

$$
g(p_1^{a1}p_2^{a2}...p_k^{ak}) = g(p_1^{a1}) * g(p_2^{a2}) * ... * g(p_k^{ak})
$$

Theorem. For any prime *p* and positive integer *a* holds the relation:

$$
g(p^{a}) = (a+1)p^{a} - ap^{a-1}
$$

For $a = 1$ we have:

$$
g(p) = GCD(1, p) + GCD(2, p) + ... + GCD(p, p) = (p - 1) + p = 2p - 1
$$

Similarly for $a = 2$:

$$
GCD(1,p2) + GCD(2,p2) + ... GCD(p,p2) +
$$

\n
$$
GCD(p+1,p2) + GCD(p+2,p2) + ... GCD(2p,p2) + ...
$$

\n
$$
GCD(2p+1,p2) + GCD(2p+2,p2) + ... GCD(3p,p2) + ...
$$

\n
$$
GCD((p-1)p+1,p2) + GCD((p-1)p+2,p2) + ... GCD(p2,p2)
$$

$$
= (1 + 1 + ... + 1 + p) +
$$

\n
$$
(1 + 1 + ... + 1 + p) +
$$

\n...
\n
$$
(1 + 1 + ... + 1 + p2) =
$$

\n
$$
= (p - 1 + p) * (p - 1) + (p - 1 + p2) =
$$

\n
$$
(2p - 1) * (p - 1) + (p2 + p - 1) =
$$

\n
$$
2p2 - 2p - p + 1 + (p2 + p - 1) =
$$

\n
$$
= 3p2 - 2p
$$

Lemma. If *d* is a divisor of *n*, then there are exactly $\varphi(n/d)$ numbers *i* such that $GCD(i, n) = d$.

 \triangleright Obviously *i* must be divisible by *d*, let $i = di$. Then

 $GCD(i, n) = GCD(di, n) = d * GCD(j, n/d)$

If the last expression is equal to *d*, then $GCD(i, n/d) = 1$. The number of such *j* that $\text{GCD}(j, n/d) = 1$ is $\varphi(n/d)$.

Example. The number of such *i* that $GCD(i, 24) = 3$ is $\varphi(8) = 4$.

GCD(*i*, 8) = 1 for $j \in \{1, 3, 5, 7\}$, therefore GCD(*i*, 24) = 3 for $i \in \{3, 9, 15, 21\}$ (we have $i = 3j$).

Theorem.

$$
g(n) = \sum_{i=1}^{n} GCD(i, n) = n \sum_{d|n} \frac{\varphi(d)}{d}
$$

 \blacktriangleright According to the above lemma, the number of pairs (i, n) for which GCD (i, n) = *e*, is exactly $\varphi(n/e)$. Replacing $n / e = d$, we get:

$$
g(n) = \sum_{e|n} e \varphi \left(\frac{n}{e} \right) = \sum_{d|n} \frac{n}{d} \varphi(d) = n \sum_{d|n} \frac{\varphi(d)}{d}
$$

Example. Let $n = 6$.

Then $g(6) = \sum_{n=1}^{\infty}$ $=$ GCD(1, 6) + GCD(2, 6) + GCD(3, 6) + GCD(4, 6) + GCD(5, 6) + GCD(6, 6) = 1 $(i, 6)$ *i* $GCD(i,6) =$ $= 1 + 2 + 3 + 2 + 1 + 6 = 15$ In the same time $g(6) = g(2) * g(3) =$ $(GCD(1, 2) + GCD(2, 2)) * (GCD(1, 3) + GCD(2, 3) + GCD(3, 3)) =$

$$
(1 + 2) * (1 + 1 + 3) = 3 * 5 = 15
$$

Compute g(6) using the formula $g(n) = n \sum_{n=1}^{\infty} \frac{\varphi(d)}{n}$ $\frac{d}{d|n}$ *d d* $n\sum_{i=1}^{n} \frac{\varphi(a)}{a}$ $g(6) = 6 \sum \frac{\varphi(d)}{1}$ |6 6 $\frac{d}{d}$ *d* $\frac{\varphi(d)}{d}$ = I J \ I \setminus $\left(\frac{\varphi(1)}{\varphi(2)}+\frac{\varphi(2)}{\varphi(3)}+\frac{\varphi(3)}{\varphi(3)}\right)$ 6 (6) 3 (3) 2 (2) 1 $6\cdot\left(\frac{\varphi(1)}{1}+\frac{\varphi(2)}{2}+\frac{\varphi(3)}{2}+\frac{\varphi(6)}{2}\right)=$ $= 6\varphi(1) + 3\varphi(2) + 2\varphi(3) + \varphi(6) = 6 + 3 + 4 + 2 = 15$

Let's calculate $g(6)$ based on the multiplicativity of the function $f(x) = GCD(x, n)$: $g(6) = g(2) * g(3) = (2 * 2 - 1) * (2 * 3 - 1) = 3 * 5 = 15$

In the same time $g(12) = g(4) * g(3) =$ $(GCD(1, 4) + GCD(2, 4) + GCD(3, 4) + GCD(4, 4))$ ^{*} * $(GCD(1, 3) + GCD(2, 3) + GCD(3, 3)) =$ $(1 + 2 + 1 + 4) * (1 + 1 + 3) = 8 * 5 = 40$

Compute g(12) using the formula $g(n) = n \sum_{n=0}^{\infty} \frac{\varphi(d)}{n}$ $\frac{d}{d|n}$ *d d n* | $\frac{\varphi(a)}{a}$: $g(12) = 12 \sum \frac{\varphi(d)}{l}$ |12 12 $\frac{d}{d\ln 2}$ *d* $\frac{\varphi(d)}{d}$ = $\overline{}$ \int \backslash I \setminus $\frac{\rho(1)}{\rho(1)} + \frac{\rho(2)}{2} + \frac{\rho(3)}{2} + \frac{\rho(4)}{2} + \frac{\rho(6)}{2} +$ 12 (12) 6 (6) 4 (4) 3 (3) 2 (2) 1 $12 \cdot \left(\frac{\varphi(1)}{1} + \frac{\varphi(2)}{2} + \frac{\varphi(3)}{3} + \frac{\varphi(4)}{3} + \frac{\varphi(6)}{3} + \frac{\varphi(12)}{3} \right) =$

$$
= 12\varphi(1) + 6\varphi(2) + 4\varphi(3) + 3\varphi(4) + 2\varphi(6) + \varphi(12) =
$$

= 12 + 6 + 8 + 6 + 4 + 4 = 40

The divisors of 12 are: 1, 2, 3, 4, 6, 12. The number of *i* such that $GCD(i, 12) = d$ equals to $\varphi(12/d)$. For example GCD(*i*, 12) = 3 holds for $\varphi(12/3) = \varphi(4) = 2$ different *i*, namely for $i = 3, 9$.

Let's calculate $g(12)$ based on the multiplicativity of the function $f(x) = GCD(x, n)$: $g(12) = g(2^2) * g(3) = (3 * 2^2 – 2 * 2) * (2 * 3 – 1) = 8 * 5 = 40$

Function *euler* computes the Euler function.

```
long long euler(long long n)
{
  long long i, result = n;
 for (i = 2; i * i < = n; i++)\{if (n \text{\%} i == 0) result -= result / i;
    while (n \text{\%} i == 0) n /= i;
 }
 if (n > 1) result - result / n;
  return result;
}
```
The main part of the program. Read value of *n*. Compute the value $g(n)$ by the formula $\sum e\varphi\vert\ \stackrel{n}{-}\vert$ J \backslash \mathbf{r} \setminus ſ \overline{e} *e* $\left\langle e\right\rangle$ *n* $e\varphi\left(\frac{n}{n}\right)$. Search for all divisors of *n* among the numbers from 1 to $\lfloor\sqrt{n}\rfloor$. If *i* is a divisor of *n*, then *n* / *i* will be also the divisor of *n*. Therefore, for each found divisor $i \leq \lfloor \sqrt{n} \rfloor$ we must add to result *res* the value $i\varphi\left(\frac{n}{n}\right) + \frac{n}{\varphi}(i)$ *i n i n* $i\varphi$ $\left| \frac{n}{\cdot} \right| + \frac{n}{\cdot} \varphi$ J \setminus \mathbf{I} \setminus $\binom{n}{r}$ + $\frac{n}{r}\varphi(i)$. If *n* is a full square, $i = sq$ $= \lfloor \sqrt{n} \rfloor$, then $i\varphi \lfloor \frac{n}{i} \rfloor = \frac{n}{i} \varphi(i)$ *i n i n* $i\varphi\left|\frac{n}{\cdot}\right|=\frac{n}{\cdot}\varphi$ J \setminus \mathbf{I} \setminus $\binom{n}{x} = \frac{n}{x} \varphi(i)$ and two identical terms will be added to the *res* sum.

Therefore we'll subtract one of them from *res* during the initialization of the variable.

```
while(scanf("%lld",\delta n) == 1)
{
  sq = (long long) sqrt(1.0*n);res = (sq * sq == n) ? -sq * euler(sq) : 0;for(i = 1; i \leq sq; i++)if(n \frac{1}{2} i == 0) res = res + i * euler(n/i) + (n / i) * euler(i);
   printf("%lld\n",res);
}
```
E-OLYMP [1129. GCD Extreme II](https://www.e-olymp.com/en/problems/1129) For a given number *n* calculate the value of G, where

$$
\mathbf{G} = \sum_{i=1}^{i
$$

Here GCD(*i*, *j*) means the greatest common divisor of integers *i* and *j*.

For those who have trouble understanding summation notation, the meaning of G is given in the following code:

$$
G = 0;
$$

\nfor (i = 1; i < n; i++)
\nfor (j = i + 1; j < n; j++)
\n{
\nG += GCD(i, j);
\n
\nLet $d[k] = \sum_{i=1}^{i < k} \sum_{j=i+1}^{j \le k} GCD(i, j).$
\nFor example $d[2] = \sum_{i=1}^{i < 2} \sum_{j=i+1}^{j \le 2} GCD(i, j) = \sum_{j=2}^{j \le 2} GCD(1, j) = GCD(1, 2) = 1.$
\nYou can see that

$$
d[k] = \sum_{i=1}^{i < k} \sum_{j=i+1}^{j \le k} GCD(i, j) = \sum_{i=1}^{i < k-1} \sum_{j=i+1}^{j \le k-1} GCD(i, j) + \sum_{i=1}^{i < k} GCD(i, k) = d[k-1] + \sum_{i=1}^{i < k} GCD(i, k)
$$

d[k-1] equals to the sum of GCD over all $p =$ pairs (i, j), marked with grey

(1,2)		p ano (1, 1), mantoa witi gioy		
(1,3)	(2,3)			
(1,4)	2,4)	(3,4)		
	\cdot \cdot \cdot	.		
$1, k-1$	$(2, k-1)$	$(3, k-1)$	$(k-2,k-1)$	
(1,k)	(2,k)	(3,k)	$(k-2,k)$	$(k-1,k)$

d[k] equals to sum of GCD for all pairs (i, j)

d[k] = d[k-1] +
$$
\sum_{i=1}^{k-1} GCD(i,k)
$$

It remains to show how to calculate the value of $\sum^{k=k}$ Ξ *i k i i k* 1 $GCD(i,k)$ faster than usual summation.

Lema. Let *n* is divisible by *d* and $GCD(x, n) = d$. Then $x = dk$ for some positive integer *k*. From the relation $GCD(dk, n) = d$ it follows that | J $\left(k,\frac{n}{2}\right)$ l ſ *d* $GCD\left(k,\frac{n}{l}\right)=1.$

Theorem. Let $f(n) = \sum_{i=1}^{n}$ *n i i ⁿ* 1 GCD(*i*,*n*). Then $f(n) = \sum_{d|n} d \cdot \varphi \left(\frac{n}{d} \right)$ $\left(\frac{n}{2}\right)$ l $\sum_{d|n} d \cdot \varphi \bigg(\frac{n}{d}$ $d \cdot \varphi \left(\frac{n}{l} \right)$ for all divisors *d* of number *n*. $\varphi(n)$ indicates here the Euler function.

Proof. The number of such *i*, for which $GCD(i, n) = 1$, equals to $\varphi(n)$. The number of such i ($i \le n$), for which GCD(i , n) = *d* (*d* is a divisor of *n*, $i = dk$), equals to the number of such k ($k \leq \frac{n}{d}$ $\frac{n}{i}$), for which I J $\left(k,\frac{n}{2}\right)$ l ſ *d* $GCD\left(k,\frac{n}{l}\right)=1$ or I J $\left(\frac{n}{2}\right)$ l ſ *d* $\varphi\left(\frac{n}{i}\right)$. The value of GCD(*i*, *n*) can be only the divisors of n . To find the value $f(n)$ it remains to sum the values | $\bigg)$ $\left(\frac{n}{2}\right)$ l $\cdot \varphi \bigg(\frac{n}{d} \bigg)$ $d \cdot \varphi \Big| \frac{n}{2}$ over all divisors *d* of *n*.

Example. Consider the direct calculation: $f(6) = \sum_{n=1}^{6}$ 1 $GCD(i, 6)$ *i* $i, 6$ = GCD(1, 6) + $GCD(2, 6) + GCD(3, 6) + GCD(4, 6) + GCD(5, 6) + GCD(6, 6) = 1 + 2 + 3 + 2 + 1 + 6$ $= 15.$

Consider the calculation using the formula: $f(6) = \sum_{d|6} d \cdot \varphi \left(\frac{d}{d} \right)$ $\left(\frac{6}{4}\right)$ l $\sum_{|6}d\cdot\varphi\Bigg($ 6 $d\overline{d}$ \overline{d} \overline{d} $d \cdot \varphi \left| \frac{\sigma}{\sigma} \right| =$ l J $\left(\frac{6}{4}\right)$ l $\cdot \varphi \bigg(\frac{6}{1}$ $1 \cdot \varphi \left(\frac{6}{1} \right) +$ l J $\left(\frac{6}{1}\right)$ l $\cdot \varphi \bigg(\frac{6}{2}$ $2 \cdot \varphi \left(\frac{6}{2} \right) +$ I J $\left(\frac{6}{7}\right)$ l $\cdot \varphi \bigg(\frac{6}{3}$ $3 \cdot \varphi \left(\frac{6}{2} \right) +$ $\overline{}$ $\bigg)$ $\left(\frac{6}{2}\right)$ l $\cdot \varphi \Big(\frac{6}{6}$ $6 \cdot \varphi \left(\frac{6}{5} \right) =$ $1 \cdot \varphi(6) + 2 \cdot \varphi(3) + 3 \cdot \varphi(2) + 6 \cdot \varphi(1) =$ $2 + 4 + 3 + 6 = 15$

In the first and in the second case 15 is the sum of two units $(1 \cdot \varphi(6))$, two doules $(2 \cdot \varphi(3))$, one triple $(3 \cdot \varphi(2))$ and one sextuple $(6 \cdot \varphi(1))$.

Declare the arrays. fi^[*i*] stores the value of the Euler function $\varphi(i)$.

#define MAX 4000010 long long d[MAX], fi[MAX];

The function *FillEuler* fills the array *fi* so that $f[i] = \varphi(i)$, $i < MAX$.

```
void FillEuler(void)
{
```
Initially set the value of fi[*i*] equal to *i*.

for(i = 1; i < MAX; i++) fi[i] = i;

Each even number *i* has a prime divisor $p = 2$. To speed up the function working time, process it separately. For each even number *i* set $f[i] = f[i][i] * (1 - 1/2) = f[i]/2$.

for(i = 2; i < MAX; i+=2) fi[i] /= 2;

Enumerate all the possible odd divisors $i = 3, 5, 7, \ldots$.

for(i = 3; i < MAX; i+=2) $if(fifii == i)$

If fi[i] = *i*, then the number *i* is prime. The number *i* is a prime divisor for any *j*, represented in the form *k* * *i* for any positive integer *k*.

for($\dot{i} = i$; $\dot{j} <$ MAX; $\dot{i} +i$

If *i* is a prime divisor of *j*, then set $f_1(i) = f_1(i) * (1 - 1/i)$.

 $f[i[j]$ -= $f[i[j]/i;$

}

Before calling the function f the values $d[i]$ already contain $\varphi(i)$. The body of the function f adds to d[*j*] the values so that when the function finishes its work, the value d[*j*] contains $\sum_{ }^{j-1}$ $\mathrm{GCD}(i,j)$ *j* (i, j) according to the formula given in the theorem.

```
void f(void)
{
 int i, SQRT MAX = sqrt(1.0*MAX);
 for(i = 2; \overline{i} <= SQRT MAX; i++)
 {
   d[i * i] += i * f[i];
```
1

i

The number *i* is a divisor of *j*. So we need to add to d[*j*] the value of $\overline{}$ $\bigg)$ $\left(\frac{j}{j}\right)$ l $\cdot \varphi\left(\frac{j}{i}\right)$ $i \cdot \varphi \left(\frac{j}{i} \right)$. Since the number *j* has also a divisor *j* / *i*, add to d[*j*] the value of $\frac{f}{i} \cdot \varphi \left| \frac{f}{i} \right|$ $\bigg)$ \setminus \parallel \setminus $\cdot \phi$ *j i j i j* $\varphi\left(\frac{J}{j/i}\right) = \frac{J}{i} \cdot \varphi(i)$ $\frac{j}{\cdot} \cdot \varphi(i)$. If $i^2 = j$, add to d[*j*] not two terms, but only one l J $\left(\frac{j}{j}\right)$ L $\cdot \varphi\left(\frac{j}{i}\right)$ $i \cdot \varphi \left(\frac{j}{\cdot} \right) = i \cdot \varphi(i).$

// for(j = i * i + i; j < MAX; j += i) // d[j] += i * fi[j / i] + j / i * fi[i];

We can avoid integer division in implementation. To do this note, that since the value of the variable *j* is incremented each time by *i*, then the value j / i will be increase by one in a loop. Set initially $k = j / i = (i * i + i) / i = i + 1$ and then increase k by 1 in each iteration.

for(j = i * i + i, k = i + 1; j < MAX; j += i, k++) d[j] $+= i * f[i[k] + k * f[i[i];$

Its sufficiently to continue the loop by *i* till \sqrt{MAX} , because if *i* is a divisor of *j* and $i > \sqrt{MAX}$, then considering the fact that $j / i < \sqrt{MAX}$ we can state that the divisor *i* of the number *j* was taken in account when we considered the divider j / i .

}

}

The main part of the program. Initialize the arrays. Let $d[i] = \varphi(i)$.

memset(d, 0, sizeof(d)); FillEuler(); memcpy(d,fi,sizeof(fi));

for($i = 3; i <$ MAX; i^{++}) $d[i]$ += $d[i-1]$;

while(scanf("%lld",&n),n) printf("%lld\n",d[n]);

E-OLYMP [5141. LCM sum](https://www.e-olymp.com/en/problems/5141) Given *n*, calculate the sum LCM $(1, n)$ + LCM $(2, n)$ $+ ... + LCM(n, n)$, where $LCM(i, n)$ denotes the Least Common Multiple of the integers *i* and *n*.

Let
$$
S = \sum_{i=1}^{n} LCM(i, n) = \sum_{i=1}^{n-1} LCM(i, n) + LCM(n, n) = \sum_{i=1}^{n-1} LCM(i, n) + n
$$
, where from
\n
$$
S - n = LCM(1, n) + LCM(2, n) + ... + LCM(n - 1, n)
$$

Rearrange the terms in the right side in reverse order and write the equality in the form

$$
S - n = LCM(n - 1, n) + ... + LCM(2, n) + LCM(1, n)
$$

Let's add two equalities:

$$
2(S-n) = (LCM(1, n) + LCM(n-1, n)) + ... + (LCM(n-1, n) + LCM(1, n))
$$

Consider the expression in parentheses:

$$
LCM(i, n) + LCM(n-i, n) = \frac{in}{GCD(i, n)} + \frac{(n-i)n}{GCD(n-i, n)}
$$

Note that the denominators of the last two terms are equal: $GCD(i, n) = GCD(n - i,$ *n*), hence

$$
\frac{in}{GCD(i,n)} + \frac{(n-i)n}{GCD(n-i,n)} = \frac{in+(n-i)n}{GCD(i,n)} = \frac{n^2}{GCD(i,n)}
$$

So

$$
2(S - n) = \sum_{i=1}^{n-1} \frac{n^2}{GCD(i,n)} = n \sum_{i=1}^{n-1} \frac{n}{GCD(i,n)}
$$

 $GCD(i, n) = d$ can take only the values of divisors of the number *n*, while the number of *i* for which the specified equality holds is φ (*n* / *d*). Hence $\overline{ }$

$$
2(S-n) = n \sum_{i=1}^{n-1} \frac{n}{GCD(i,n)} = n \sum_{\substack{d|n \\ d \neq n}} \frac{n}{d} \cdot \varphi\left(\frac{n}{d}\right) = n \sum_{\substack{d|n \\ d \neq 1}} d \cdot \varphi(d) = n \left(\sum_{d|n} d \cdot \varphi(d) - 1\right)
$$

The second equality is true because if *d* is a divisor of *n*, then *n* / *d* is also a divisor of *n*. Moreover, if $d \neq n$, then $n/d \neq 1$. The last equality is valid, since the summand 1^{*} φ (1) = 1 is included in the sum. It remains to extract the value S from the equation:

$$
2(S-n) = n \bigg(\sum_{d|n} d \cdot \varphi(d) - 1 \bigg),
$$

$$
2S - 2n = n \sum_{d|n} d \cdot \varphi(d) - n,
$$

$$
S = \frac{n}{2} \bigg(\sum_{d|n} d \cdot \varphi(d) + 1 \bigg)
$$