Quicksort

Quicksort is a *sorting algorithm* whose worst-case running time is $O(n^2)$ on an input array of *n* numbers. In spite of this slow worst-case running time, quicksort is often the best practical choice for sorting because it is remarkably efficient on the average: its expected running time is O(*n* log*n*), and the constant factors hidden in the O(*n* log*n*) notation are quite small.

Quicksort is based on the *divide-and-conquer* paradigm. Here is the three-step divide-and-conquer process for sorting a typical subarray a[*l* . . *r*]:

Divide: Partition (rearrange) the array $a[l \tcdot r]$ into two (possibly empty) subarrays $a[l \cdot q]$ and $a[q +1 \cdot r]$ such that each element of $a[l \cdot q]$ is less than or equal to $a[q]$, which is, in turn, less than or equal to each element of $a[q + 1, r]$. Compute the index *q* as part of this *partitioning* procedure.

Conquer: Sort the two subarrays $A[I \cdot a]$ and $A[q +1 \cdot a]$ by recursive calls to quicksort.

Combine: Since the subarrays are sorted in place, no work is needed to combine them: the entire array $a[l \cdot r]$ is now sorted.

In the worst case, the running time of the algorithm is $O(n^2)$, although in practice its average running time is O(*n log n*).

One of the critical operations in quicksort is the selection of a *pivot* (the element around which the array is partitioned). The simplest algorithm for choosing a pivot is to take the first or last element of array, but in this case we can get a bad behavior on almost sorted data. Niklaus Wirth suggested to use a **middle element** to prevent this case from degrading to $O(n^2)$ on bad inputs. The "*median of three*" selects the **median** of the first, middle and last array elements as a pivot. However, even though it works well on most inputs, it is still possible to find inputs that slow down this sorting algorithm a lot.

Here is an implementation where the array partitioning algorithm $m[L, R]$ was developed by *Hoare*. $x = m[L]$ is chosen as pivot. The idea is to accumulate elements, not greater than x , in the initial segment of the array $m[L, i]$, and elements, not less than *x*, at the end of m [*j* .. R]. At the beginning, both segments are empty: $i = L - 1$, $j =$ $R + 1$.

current state

Partitioning an array is done by repeating the following steps:

Step 1. Increase *i* by one. Move the pointer *i* to the right until encountered a number that is not less than *x*.

Step 2. Decrease *j* by one. Move the pointer *j* to the left until encountered a number that is not greater than *x*.

Step 3. If in this case $i < j$ holds, then we swap the values m[i] and m[j] and go to step 1. Otherwise, the splitting algorithm ends and the array is considered divided into $m[L ... j]$ and $m[j + 1 ... R]$.

Upon completion of the *Partition* procedure, each element of subarray m[L ... *j*] does not exceed the values of each element of the subarray $m[j + 1, ..., k]$. The running time of the procedure is $O(n)$, where $n = R - L + 1$.

E-OLYMP [2321.](https://www.e-olymp.com/en/problems/2321) Sort Sort array of integers in nondecreasing order.

► Use **quicksort** to sort an array.

```
#include <stdio.h>
int m[1001];
int i, n;
void swap(int &i, int &j)
{
  int temp = i; i = j; j = temp;
}
int Partition(int L, int R)
{
  int x = m[L], i = L - 1, j = R + 1; while (1)
  {
    do j--; while (m[j] > x);
   do i++; while (m[i] < x);
    if (i < j) swap(m[i], m[j]); else return j;
   }
}
void QuickSort(int L, int R)
{
 if (L < R) {
   int q = Partition(L, R);
    QuickSort(L, q); QuickSort(q + 1, R);
   }
}
int main(void)
{
   scanf("%d", &n);
 for (i = 0; i < n; i++) scanf("%d", &m[i]);
 QuickSort(0, n - 1);
  for (i = 0; i < n; i++) printf("%d", m[i]);
 printf("n");
   return 0;
}
```
Example. Let's do the Hoare *partition* of the next array. Pivot $x = 12$.

E-OLYMP [972. Sorting time](https://www.e-olymp.com/en/problems/972) Sort the time according to specified criteria. ► Use **QuickeSort** to sort the time structures.

Declare structure **MyTime**.

```
struct MyTime
{
  int hour, min, sec;
  MyTime() {};
 MyTime(MyTime &a) : hour(a.hour), min(a.min), sec(a.sec) {};
};
```
Declare the comparator.

```
int f(MyTime a, MyTime b)
{
 if ((a.hour == b.hour) && (a.min == b.min)) return a.sec < b.sec;
 if (a.hour == b.hour) return a.min < b.min;
 return a.hour < b.hour;
}
```
Read the input data into array of **MyTime** sturctures.

```
#define MAX 1001
MyTime lst[MAX];
```
Call **QuickeSort** to sort the data.

QuickSort(lst, 1, n);

E-OLYMP [1953. The results of the olympiad](https://www.e-olymp.com/en/problems/1953) *n* Olympiad participants have unique numbers from 1 to *n*. As a result of solving problems at the Olympiad, each participant received a score (an integer from 0 to 600). It is known how many points everybody scored.

Print the list of participants in Olympiad in decreasing order of their accumulated points.

► Use **QuickSort** to sort the *Member* (participant) structures. Each participant has his own *id* and *score*.

```
struct Member
{
  int id, score;
 Member(int id = 0, int score = 0) : id(id), score(score) {};
};
```
E-OLYMP [8637. Sort the points](https://www.e-olymp.com/en/problems/8637) The coordinattes of *n* points are given on a plane. Print them in increasing order of sum of coordinates. In the case of equal sum of point coordinates sort the points in increasing order of abscissa.

► Use **QuickSort** to solve the problem.

E-OLYMP [8236. Sort evens and odds](https://www.e-olymp.com/en/problems/8236) Sequence of integers is given. Sort the given sequence so that first the odd numbers are arranged in ascending order, and then the even numbers are arranged in descending order.

► Use **QuickSort** to solve the problem according to the following comparator f($int a$, $int b$):

- if *a* and *b* have different parity, then even numbers must come after odd numbers;
- if *a* and *b* are even, then sort them in in decreasing order;
- if *a* and *b* are odd, then sort them in in increasing order;

Note that the input numbers can be positive and negative.

Consider *another* algorithm for partitioning an array m[L .. R]. Let us choose $x =$ m[R] as the **pivot** element. During operation, the algorithm of partitioning the array is divided into 4 parts:

- elements not larger than *x*;
- \bullet elements larger than *x*;
- unsorted part;
- the last element is a **pivot**;

Initially set $i = L - 1$. Move the pointer *j* from L to R – 1. As soon as found an element m[*j*] that is not greater than *x*, increase *i* by 1 and swap m[*i*] and m[*j*]. The pivot *x* during the *j* loop remains in its place. At the end of the loop, swap $m[i + 1]$ and *x*. The array will then be split into two halves by the pivot *x*.

E-OLYMP [2321.](https://www.e-olymp.com/en/problems/2321) Sort Sort array of integers in nondecreasing order. ► Use **quicksort** to sort an array.

```
#include <stdio.h>
int m[1001];
int i, n;
void swap(int &i, int &j)
{
 int temp = i; i = j; j = temp;
}
int Partition(int L, int R)
{
 int x = m[R], i = L - 1, j;
  for (j = L; j < R; j++)if (m[j] \leq x) {
      i++;swap(m[i], m[j]);
     }
 swap(m[i + 1], m[R]); return i + 1;
}
void QuickSort(int L, int R)
{
 if (L < R) {
   int q = Partition(L, R);
   OuickSort(L, q - 1);
   QuickSort(q + 1, R); }
}
int main(void)
{
  scanf("%d", &n);
 for (i = 0; i < n; i++) scanf("%d", \delta m[i]);
 QuickSort(0, n - 1);
 for (i = 0; i < n; i++) printf("%d ", m[i]);
 printf("\n\ranglen");
  return 0;
}
```
Example. Let's make a partition of the next array. The pivot element $x = 2$. Mark the element m[*j*] in brown, that should be swapped with m[$i + 1$]. Highlighted in green the set of already processed elements, not greater than *x*, highlighted in red the elememts larger than *x*.

Time complexity of the quicksort algorithm depends on how the array is partitioned at each step. If the partitioning occurs into approximately equal parts, then the running time is $O(n \log_2 n)$. If the sizes of the parts are very different, sorting process can take $O(n^2)$ time.

Introspective sort

Introsort, or *introspective sort*, is a sorting algorithm proposed by David Musser in 1997. It uses **quicksort** and switches to **heapsort** when the recursion depth exceeds some predetermined level (for example, the logarithm of the number of items being sorted). This approach combines the advantages of both methods with O(*n* log *n*) worstcase performance and performance comparable to quicksort.

Finding the *k***-th order statistic**

*k***-th order statistic** is the *k*-th smallest / largest element in array. Let us show how to compute it in linear time.

Using the procedure *Partition*, divide the array $m[l \dots r]$ in two halves $m[l \dots pos]$ and m[$pos + 1$.. *r*]. If $l = r$, then the *k*-th element is in m[*l*]. If $k \le pos$, the *k*-th element is in m[1 .. *pos*]. Otherwise it should be looked for in m[$pos + 1$.. *r*].

Example. Let we want to find *k*-th smallest element is array $m = \{12, 17, 3, 18, 27, \ldots\}$ 5, 26, 2}. Run *partition* and divide an array in two parts:

Left part m[1 .. 3] contains 3 elements, right part m[4 .. 8] contains 6 elements.

- If $k \leq 3$, continue search in the left part;
- If $k \geq 4$, continue search in the right part;

E-OLYMP [9025. k-th element](https://www.e-olymp.com/en/problems/9025) Array *а* of *n* integers and number *k* are given. Find the *k*-th element in a sorted array a (indexing starts from 1).

 \blacktriangleright To solve the problem in $O(n \log_2 n)$, it is enough to *sort* the array and print its *k*th element.

We can use the *nth_element* function, which in $O(n)$ permutes the elements of the array in such a way that the *k*-th element will be in the *k*-th place, the numbers to the left of it are no more than a[*k*], and the numbers to the right of it are at least a[*k*].

The *k*-th statistic can be found in linear time using the *partition* function, which is used in *quicksort* algorithm. The partition function in linear time splits (does not sort) the array $a[1..n]$ into two parts $a[1..pos]$ and $a[pos + 1..n]$ so that all elements of the array from the first part are no more than elements from the second part. If $k \le p \text{o} s$, then we look for the *k*-th statistics in a[1.*pos*], otherwise we look for it in a[$pos + 1.n$].

#include <cstdio>

```
#include <vector>
#include <algorithm>
using namespace std;
vector<int> v;
int n, k, i;
int Partition(int left, int right)
{
 int x = v[\text{left}], i = \text{left} - 1, j = \text{right} + 1; while (1)
   {
    do j--; while (v[j] > x);
    do i++; while (v[i] < x);
    if (i < j) swap(v[i], v[j]); else return j;
   }
}
int kth(int k, int left, int right)
{
  if (left == right) return v[left];
  int pos = Partition(left, right);
  if (k <= pos) return kth(k, left, pos);
 else return kth(k, pos + 1, right);
}
int main(void)
{
  scanf("%d %d", &n, &k);
 v.resize(n + 1);
 for (i = 1; i \le n; i++) scanf("%d", &v[i]);
 printf("%d\n", kth(k, 1, n));
  return 0;
}
```
E-OLYMP 5201. **k-th minimum** Find the *k*-th number in array $A = \langle a_1, a_2, ..., a_n \rangle$ > sorted in increasing order.

Array A is generated with the polynom $P(x) = 132x^3 + 77x^2 + 1345x + 1577$: $a_i =$ P(*i*) mod 1743.

 \blacktriangleright Generate array A. Use *partition* to solve the problem in $O(n)$.

E-OLYMP [5721. Find an element](https://www.e-olymp.com/en/problems/5721) Array of *n* integers is given. Find its *k*-th element in decreasing order.

 \blacktriangleright Use *partition* to solve the problem in $O(n)$.