
Backtracking

Generate permutations

E-OLYMP 2169. Permutations Given a positive integer n, print all permutations

of the integers from 1 to n in lexicographical order.

► In the problem you should generate all permutations of numbers from 1 to n.

This can be done, for example, using the next_permutation function.

Use array m to generate permutations.

int m[10];

Read the value of n. Initialize the array m with the initial permutation 1 2 3…. n

starting from the first index.

scanf("%d",&n);

for(i = 1; i <= n; i++) m[i] = i;

Using the next_permutation function, generate all permutations: from the

lexicographically smallest to the lexicographically largest.

do

{

Print the next permutation on a separate line.

 for(i = 1; i <= n; i++)

 printf("%d ",m[i]);

 printf("\n");

} while(next_permutation(m+1,m+n+1));

E-OLYMP 1533. Anagram generation You are to write a program that has to

generate all possible words from a given set of letters.

Example: Given the word “abc”, your program should – by exploring all different

combination of the three letters – output the words “abc”, “acb”, “bac”, “bca”, “cab”

and “cba”.

In the word taken from the input file, some letters may appear more than once. For

a given word, your program should not produce the same word more than once, and the

words should be output in alphabetically ascending order.

► 1. What is the difference between lexicographic and alphabetical sorting?

2. Consider the string zAZaaZ. Sort the letters in alphabetical and lexicographic

order.

3. What STL function can be used to generate permutations of all letters in a word?

4. The function sort, by default, sorts the letters in a word in lexicographic order.

How to implement with it an alphabetical sorting?

5. Implement a comparator for alphabetical sort int lt(char a, char b),

which is passed as the third argument to the sort function.

https://www.e-olymp.com/en/problems/2169
https://www.e-olymp.com/en/problems/1533

6. How to find the alphabetically smallest permutation of letters in the string s?

Sort the characters of the input string in ascending order. Use the built-in

next_permutation function to generate all permutations. However, you should write

your own function to compare the characters. In standard (lexicographic) comparison,

any uppercase letter is less than any lowercase letter. That is, when sorting letters a, A,

z, Z, r, R, we get the word ARZarz. In this problem you should sort (and generate

permutations) in accordance with the alphabetical order AaBbCc… Zz, so it is

necessary to obtain AaRrZz from the letters a, A, z, Z, r, R.

For the string aAb (1-st test case) the smallest permutation would be Aab, and the

biggest would be baA.

The function lt will be used for sorting and generating permutations. It compares

two characters according to alphabetical order AaBbCc ... Zz.

int lt(char a, char b)

{

 if (toupper(a) != toupper(b)) return (toupper(a) < toupper(b));

 return (a < b);

}

Read the input string, calculate its length, and sort the characters alphabetically.

scanf("%s", &s);len = strlen(s);

sort(s,s+len,lt);

Print the current anagram (permutation of characters) and generate the next one

until its possible.

do {

 printf("%s\n",s);

} while(next_permutation(s,s+len,lt));

Graphs

E-OLYMP 122. Mountain routes The mountain tourist resort consists of n

hostels, connected with k mountain routes (other routes in mountains are dangerous).

Any route between two hostels takes 1 day. The travel group, located in the hostel a, is

going to go to the hostel b for no more than d days. How many different routes (without

cycles) between a and b exist?

► There is a directed graph where you need to find the number of paths between

two vertices. We’ll solve the problem by exhaustive search. Starting from the vertex a,

using the depth first search strategy, we’ll go to the vertex b. Next, using backtracking,

iterate over all possible paths from a to b, counting their number in the variable res. The

length of all found paths must not exceed d.

https://www.e-olymp.com/en/problems/122

In the sample given between the hostels 2 and 5 there are 3 acyclic paths of length

at most 3.

1 2

3 45

2 1 5

2 4 1 5

2 1 3 5

Store the adjacency matrix of the graph in the array g.

#define MAX 51

int g[MAX][MAX], used[MAX];

Start the depth first search from the vertex v. It is known that the length of the path

from a to v already equals to depth.

void dfs(int v, int depth)

{

 if (depth > d) return;

If we come to vertex b, then another route has been found. Increase the number of

paths res by one and return back.

 if (v == b)

 {

 res++;

 return;

 }

Mark the vertex v as visited.

 used[v] = 1;

We are looking for a vertex i, where we can go from v.

 for(int i = 1; i <= n; i++)

 if (g[v][i] && !used[i]) dfs(i,depth+1);

Since the iteration of vertices is performed with backtracking, the vertex v should

be set as not visited.

 used[v] = 0;

}

The main part of the program. Read the input data. Read the directed graph into the

adjacency matrix g.

scanf("%d %d %d %d %d",&n,&k,&a,&b,&d);

memset(g,0,sizeof(g));

memset(used,0,sizeof(used));

for(i = 0; i < k; i++)

{

 scanf("%d %d",&a1,&a2);

 g[a1][a2] = 1;

}

Run the depth first search from the vertex a.

res = 0;

dfs(a,0);

Print the number of found routes.

printf("%d\n",res);

E-OLYMP 1540. 23 out of 5 Is it possible to find an arithmetic expression

consisting of five given numbers that will yield the value 23. For this problem you can

use only three arithmetic expressions: +, -, *. Assume that all these operations have the

same priority and executed sequentially from left to right.

► Generate all permutations of input numbers. For each permutation between the

numbers place all possible signs of arithmetic operations and calculate the resulting

expressions. If at least one expression has the value of 23, then set the variable flag to 1

and end the processing of the current test.

Store the input five numbers in an integer array a. The variable flag takes the value

of 1 if an expression with the value 23 is found, otherwise flag = 0.

int a[5], flag;

Function RunSum evaluates the value of an expression which operands are in

array a. The signs of various operations are inserted between the operands and the

resulting expressions are computed using the backtracking technique. If the value of one

of expressions is 23, then function returns 1, otherwise 0.

int RunSum(int Sum, int index)

{

 if (index == 5)

 if (Sum == 23) return 1; else return 0;

 if (RunSum(Sum+a[index],index+1)) return 1;

 if (RunSum(Sum-a[index],index+1)) return 1;

 if (RunSum(Sum*a[index],index+1)) return 1;

 return 0;

}

The main part of the program. Read five numbers into array a. Start the procedure

for generating all permutations. Since the next_permutation function generates

permutations in lexicographic order, the smallest permutation must be the first. The

smallest permutation is the one in which the numbers form a non-decreasing sequence.

That is, before generating the permutations, the numbers in the array a should be sorted

https://www.e-olymp.com/en/problems/1540

in non decreasing order (if this is not done, then not all permutations will be

considered).

while(scanf("%d %d %d %d %d",

 &a[0],&a[1],&a[2],&a[3],&a[4]),a[0]+a[1]+a[2]+a[3]+a[4])

{

 sort(a,a+5);

 flag = 0;

 do{

For each permutation, run the RunSum function, which finds out whether it is

possible to arrange the operation signs between the numbers of this permutation so as to

obtain the value 23.

 if (found = RunSum(a[0],1)) break;

 } while(next_permutation(a,a+5));

If the variable flag is set to 1, then print “Possible”, otherwise print “Impossible”.

 if (flag) printf("Possible\n"); else printf("Impossible\n");

 memset(a,0,sizeof(a));

}

E-OLYMP 10223. The Settlers of Catan Undirected graph is given. Find the

longest pah in it.

► Run the depth first search from each vertex. Generate all possible paths using

backtracking. The limitation on the number of vertices (n ≤ 25) allows you to keep

within the time limit. Find the length of the longest path.

In the second sample the longest path has the length 12.

2

0

1

3

4

5 7

6

8 10

9 11

12 14

13

1

2

3

4

5

6

7

8

10

9

11

12

Declare the adjacency matrix mas of the graph.

#define MAX 26

int mas[MAX][MAX];

https://www.e-olymp.com/en/problems/10223

Enter the vertex i. The current distance from the starting vertex to i is depth.

void run(int i, int depth)

{

The variable best maintains the value of the longest path.

 if (depth > best) best = depth;

Find into which vertex j can we go from i.

 for (int j = 0; j < n; j++)

 if (mas[i][j])

 {

Delete the edge (i, j) and continue search from the vertex j.

 mas[i][j] = mas[j][i] = 0;

 run(j, depth + 1);

Upon return from the function run restore the edge (i, j).

 mas[i][j] = mas[j][i] = 1;

 }

}

The main part of the program. Process several test cases.

while (scanf("%d %d", &n, &m), n + m)

{

 memset(mas, 0, sizeof(mas));

Read the input data. Construct the graph.

 for (i = 0; i < m; i++)

 {

 scanf("%d %d", &a, &b);

 mas[a][b] = mas[b][a] = 1;

 }

Run the depth first search from each vertex. Vertices are numbered from 0 to n – 1.

In the variable best compute the maximum length of the path.

 best = 0;

 for (i = 0; i < n; i++)

 run(i, 0);

Print the answer.

 printf("%d\n", best);

}

E-OLYMP 10236. N Queens - placement Given a chess board having n * n cells.

You need to place n queens on the board in such a way that no queen attacks any other

queen.

► To store the information about the arrangement of queens on the chessboard,

we’ll use a two-dimensional array mat:

 mat[i][j] = 1, if the queen is in position (i, j);

 mat[i][j] = 0, if there is no queen is in position (i, j);

Initially there are no queens on the board (mat[i][j] = 0). Take the first position (1,

1) and put the queen on it (mat[1][1] = 1). Look for the next position, for example (2,

3), that is not attacked by the first queen, and put the second queen there. Next, we look

for a position that is not attacked by two placed queens. Such position, for example, can

be (3, 5), where we put the third queen.

Q

Q

Q

. . .

2

1

4

3

1 2 3 4 5 6 7 8

Iterate through the positions (i, j) further and look for one where you can put the

next queen. When all the squares of the board have been examined, and all n queens

have not been placed, start return back – backtracking. Try to change the position of the

last queen by finding another suitable place for it. When all the positions of this queen

are considered, change the position of the previous queen, and so on, continue the

search with backtracking until all n queens have been placed.

In the array mat, we’ll generate a chessboard.

int mat[11][11];

Function attacked checks if at least one queen from position (i, j) will be attacked.

int attacked(int x, int y)

{

 if (mat[x][y])return 1;

 for (int i = 1; i <= n; i++)

 {

 if (y - i >= 1 && mat[x][y - i]) return 1;

 if (y + i <= n && mat[x][y + i]) return 1;

 if (x - i >= 1 && mat[x - i][y]) return 1;

 if (x + i <= n && mat[x + i][y]) return 1;

 if (x - i >= 1 && y - i >= 1 && mat[x - i][y - i]) return 1;

 if (x + i <= n && y + i <= n && mat[x + i][y + i]) return 1;

 if (x + i <= n && y - i >= 1 && mat[x + i][y - i]) return 1;

 if (x - i >= 1 && y + i <= n && mat[x - i][y + i]) return 1;

https://www.e-olymp.com/en/problems/10236

 }

 return 0;

}

Function print prints the chessboard.

void print(void)

{

 for (int i = 1; i <= n; i++)

 {

 for (int j = 1; j <= n; j++)

 printf("%d ", mat[i][j]);

 printf("\n");

 }

}

Function solve places x more queens on the board so that they do not attack each

other.

int solve(int x)

{

If x = 0, all n queens are placed. Print the state of the board.

 if (x == 0)

 {

 print();

 return 1;

 }

Iterate over the positions (i, j), check is it possible to put a queen in (i, j) so that it

does not attack already placed ones.

 for (int i = 1; i <= n; i++)

 for (int j = 1; j <= n; j++)

 {

 if (attacked(i, j) == 1) continue;

Put the queen in position (i, j).

 mat[i][j] = 1;

Place x – 1 queens on the rest of the board.

 if (solve(x - 1)) return 1;

Remove the queen from position (i, j) and make a move backward (backtracking)

 mat[i][j] = 0;

 }

 return 0;

}

The main part of the program. Read the board size n.

scanf("%d", &n);

Arrange n queens. If the placement is possible, then it will be printed. Otherwise,

print the message “Not possible”.

if (!solve(n)) puts("Not possible");

E-OLYMP 10242. Knight route Given a n * n board with the Knight placed in

the first row and first column of an empty board. Moving according to the rules of chess

knight, visit each square exactly once.

Print the order of each the cell in which they are visited.

► The knight’s moves are numbered from 1 to n2. Declare a two dimensional

array sol, where we’ll generate knight moves. Start from the point (0, 0), for which we

set sol[0][0] = 1 (the first move of the knight). Next, iterate the positions where the

chess knight can go. If there is a position where the knight can go, then make a move

there and continue the search from this position. If it is impossible to make a move from

the current position, then make a move backward (backtracking) and continue the

search. The search ends when all numbers from 1 to n2 have been placed on the

chessboard.

The maximum size of the chessboard is 8. In the sol array generate the moves of

the knight.

#define MAX 9

int sol[MAX][MAX];

The arrays xMove and yMove define the possible moves of the knight. If the knight

is in the cell (x, y), then with one move it can go to the cell (x + xMove[i], y + yMove[i]),

where 0 ≤ i ≤ 7.

int xMove[8] = { 2, 1, -1, -2, -2, -1, 1, 2 };

int yMove[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };

The function isSafe checks if cell (x, y) is free. That is, if the knight can go to cell

(x, y). The answer is affirmative if the x and y coordinates are within the chessboard (the

cells are numbered from 0 to n – 1) and the knight has not entered the cell (x, y) yet

(sol[x][y] = -1).

int isSafe(int x, int y)

{

 return (x >= 0 && x < n && y >= 0 && y < n && sol[x][y] == -1);

}

The function printSolution prints a chessboard with knight moves.

void printSolution(void)

{

 for (int x = 0; x < n; x++)

 {

 for (int y = 0; y < n; y++)

https://www.e-olymp.com/en/problems/10242

 printf("%2d ", sol[x][y]);

 printf("\n");

 }

}

The function solveKTUtil makes a move number movei to the cell (x, y). Continue

the search with backtracking from the cell (x, y) until n2 moves are made.

int solveKTUtil(int x, int y, int movei)

{

The move number movei is made to the cell (x, y).

 sol[x][y] = movei;

If n2 moves are made, then finish the search.

 if (movei == n * n) return 1;

Iterate through the cells where you can go from (x, y). From the cell (x, y) in one

move the knight can go to (x + xMove[i], y + yMove[i]), where 0 ≤ i ≤ 7.

 for (int k = 0; k < 8; k++)

 {

 int next_x = x + xMove[k];

 int next_y = y + yMove[k];

If the knight did not visit the cell (next_x, next_y) yet, then recursively run the

search from it. In (next_x, next_y) the move number movei + 1 is performed.

 if (isSafe(next_x, next_y))

 {

 if (solveKTUtil(next_x, next_y, movei + 1) == 1) return 1;

 }

 }

If all the moves of the knight are iterated, but it was not possible to make a move

to the free square, make a move backward (backtracking), free the square (x, y)

(sol[x][y] = -1).

 sol[x][y] = -1;

 return 0;

}

The function solve builds a knight’s route using backtracking. The function returns

0 if the route cannot be built. If there are several solutions, the function generates one of

them.

int solve()

{

Initialize the resulting matrix sol.

 for (int x = 0; x < n; x++)

 for (int y = 0; y < n; y++)

 sol[x][y] = -1;

The chess knight starts its path from the upper left corner. The function

solveKTUtil starts path generation from cell (0, 0). The cell (0, 0) contains the number

1.

 if (solveKTUtil(0, 0, 1) == 0)

 {

 printf("Solution does not exist");

 return 0;

 }

 else

 printSolution();

 return 1;

}

The main part of the program. Read the size of the chessboard n. Run the function

solve – solving the problem.

scanf("%d", &n);

solve();

