
Combinatorics

E-OLYMP 318. Binomial coefficients 1 Let n be a non-negative integer. Let

n! = 1 * 2 * ... * n (0! = 1),

 !!

!

knk

n
C k

n




You are given the numbers n and k. Calculate k
nC .

► Calculations will be performed in 64-bit unsigned integers (unsigned long long).

Its obvious that

 !!

!

knk

n
C k

n


 =
   

k

knnnn





...321

)1(...21
 =

k

knnnn 1
...

3

2

2

1

1










Let’s assign the variable res to the value 1. Then multiply it by
i

in 1
 for all i

from 1 to k. Each time the division by i will give integer result, but multiplication can

give overflow. Let d = GCD(res , i). Then let’s rewrite the operation

res = res * (n – i + 1) / i

as

res = (res / d) * ((n – i + 1) / (i / d))

In this implementation we’ll avoid the overflow (the answer is 64--bit unsigned

integer). Note that first we need to perform the division (n – i + 1) / (i / d), and then

multiply res / d by the resulting quotient.

To compute k

nC , we must run k iterations. But what if we need to find 1999999999

2000000000C ?

The answer is no more than 264, so such input values are possible. As long as k

nC = kn

nC  ,

then for n – k < k we should assign k = n – k.

Consider the next sample:

3

6C =
3

4

2

5

1

6
 =

3

4
15 

Let res = 15, and we need to make a multiplication res *
3

4
 = 15 *

3

4
. Compute d =

GCD(15 , 3) = 3. So 15 *
3

4
 = (15 / 3) *

)3/3(

4
 = 5 *

1

4
 = 20.

E-OLYMP 3260. How many? Once preparing for the exam, Peter put in front of

him n different cheating papers of his “favorite” subject “Calculus”. And as during the

semester Peter did not learn properly, there were so many cribs that they all can not fit

into any pocket. Peter then found the maximum number of cribs, that he can take with

him to the exam, and suddenly thought: how many ways are there to choose the right

number of cribs?

► To implement the function Cnk for calculating the binomial coefficient, we’ll

use the relation:

k
nC =

)!(!

!

knk

n


=

k

knnnn





...321

)1(...)2()1(

https://www.e-olymp.com/en/problems/318
https://www.e-olymp.com/en/problems/3260

Let's declare a variable res, initialize it with 1. Then multiply it by n and divide by

1. Next multiply it by n – 1 and divide by 2. The process of multiplication and division

will be continued k times (the numerator and denominator of k
nC after simplifying

contains k factors).

For recursive implementation of the binomial coefficient, use the recurrence

relation:

k
nC =







 





0or ,1

0,1

1

1

knk

nCC k

n

k

n

int Cnk(int n, int k)

{

 if (n == k) return 1;

 if (k == 0) return 1;

 return Cnk(n - 1, k - 1) + Cnk(n - 1, k);

}

E-OLYMP 9892. C0n +… + Cnn Given non-negative integer n, find the sum of

binomial coefficients

► The Newton’s binomial formula has the form:

  



n

i

inii

n

n
baCba

0

If we assign a = b = 1, we get the relation:

  



n

i

inii

n

n
C

0

1111

or

n

nnn

n

i

i

n

n CCCC 


...2 10

0

Thus, the indicated sum is 2n.

If n = 1, then 1

1

0

1 CC  = 1 + 1 = 2;

If n = 2, then 2

2

1

2

0

2 CCC  = 1 + 2 + 1 = 4;

If n = 3, then 3

3

2

3

1

3

0

3 CCCC  = 1 + 3 + 3 + 1 = 8.

E-OLYMP 5329. Party In how many ways can we choose among n students

exactly k of them, who will get yogurt? Print the answer modulo 9929.

► The answer to the problem is 9929modk
nC . Since it is necessary to find the

binomial coefficient by modulo, you must avoid division during calculations. To do

this, use the relation k
nC = k

nC 1 + 1
1



k
nC , 0

nC = 1.

For example, here is an iterative implementation:

#define MAX 502

#define MOD 9929

int cnk[MAX][MAX];

https://www.e-olymp.com/en/problems/9892
https://www.e-olymp.com/en/problems/5329

void FillCnk(void)

{

 int n, k;

 memset(cnk,0,sizeof(cnk));

 for(n = 0; n < MAX; n++) cnk[n][0] = 1;

 for(n = 1; n < MAX; n++)

 for(k = 1; k <= MAX; k++)

 cnk[n][k] = (cnk[n-1][k] + cnk[n-1][k-1]) % MOD;

}

E-OLYMP 7261. Difficult path Alex drank a lot this night and now when he

reached his street, he has completely lost the sense of direction. Since he can not

remember where his house is, he chooses direction randomly. Moreover, at every

crossroads there is a 50% chance that he will keep going forward or turn around and go

back. He so lost his touch with reality that he can even walk past his own house and not

notice it!

Having passed n blocks, Alex falls asleep right on the street. When he wakes up,

he wonders what were the chances that he slept near his house? From the crossroads,

where he started his way to the crossroads near his house there are m blocks. Help him.

► Let d be a two dimensional array where d[time][x] is a probability of being at

the point with abscissa x at time time. Let initially (at time t = 0) Alex is located at the

point with the abscissa x = n. Then d[0][n] = 1.

n

1.0

n

0.0

n - 1

0.5

n + 1

0.5

time = 0

time = 1

n

0.5

n - 1

0.0

n + 1

0.0time = 2

n - 2

0.25

n + 2

0.25

n

0.0

n - 1

0.375

n + 1

0.375time = 3

n - 2

0.0

n + 2

0.0

n - 3

0.125

n + 3

0.125

Let’s evaluate d[i][j] – the probability that Alex at time i will be at position j. For

this Alex must be located at time i – 1 either at position j – 1, or at position j + 1. Then

at time i he can come from them to position j with probability 50%. So

d[i][j] = (d[i – 1][j – 1] + d[i – 1][j + 1]) / 2

Let’s consider the mathematical solution of the problem. We encode the Alex’ path

with sequence of 0 and 1. Let 1 means move to the right and 0 means move to the left.

Let among n Alex’ steps k steps he did right. Then n – k steps he did left.

https://www.e-olymp.com/en/problems/7261

k
n - k

m

We are interested to find the probability that Alex moved himself in one of the

sides (for example to the right) m blocks. Then we must have: m + n – k = k, where k =

(m + n) / 2. The number of sequences of length n with k ones equals to k

nC . Since Alex

made n movements, he has 2n different ways to choose the path. So the probability that

Alex pass to the right m blocks equals to k

nC / 2n, where k = (m + n) / 2. Note that

desired probability equals to 0, if m + n is even. In this case Alex is not able to reach

home (m + n = 2k is even).

Let Alex makes n = 3 steps.

If m = 1, then k = (3 + 1) / 2 = 2 and probability equals to 2

3C / 23 = 3 / 8 = 0.375.

If m = 3, then k = (3 + 3) / 2 = 3 and probability equals to 3

3C / 23 = 1 / 8 = 0.125.

Let Alex makes n = 4 steps.

If m = 0, then k = (4 + 0) / 2 = 2 and probability equals to 2

4C / 24 = 6 / 16 = 0.375.

If m = 2, then k = (4 + 2) / 2 = 3 and probability equals to 3

4C / 24 = 4 / 16 = 0.25.

If m = 4, then k = (4 + 4) / 2 = 4 and probability equals to 4

4C / 24 = 1 / 16 = 0.0625.

Permutations

E-OLYMP 2386. The next permutation Find the next permutation. Assume that

permutation (n, n – 1, ..., 2, 1) is followed by the identity (1, 2, ..., n – 1, n).

► To generate the next permutation, we’ll use the next_permutation function. For

the lexicographically largest permutation (n, n – 1, …, 2, 1) the next is the

lexicographically smallest one (1, 2, ..., n – 1, n).

Iterate through the current permutation from right to left until the next number is

greater than the previous one. Stop when the rule is broken. Mark (underline) this

position: (5, 6, 7, 4, 3). Again iterate the traversed path (from right to left) until we

reach the first number that is greater than the marked one. The place of the second stop

is marked with double underlining: (5, 6, 7, 4, 3). Swap the marked numbers: (5, 7, 6, 4,

3). Now sort all the numbers to the right of the double underlined integer in ascending

order. Since they have so far been ordered in descending order, it is enough to reverse

the indicated segment. We get Q = (5, 7, 3, 4, 6). This permutation is next after P.

Find the permutation following P = (7, 5, 3, 6, 4, 2, 1).

6 4 2 17 5 3 64 2 17 5 3

https://www.e-olymp.com/en/problems/2386

14 3 67 5 2

E-OLYMP 1788. Inverse permutation Given a permutation p, find the inverse p-

1.

► Let p be a given permutation. It means that element from position i is moved to

position p[i], that is, the transformation i  p[i] takes place. The inverse for p is such a

permutation pi for which the inverse transformation p[i]  i takes place. That is, in the

pi array at the p[i]-th place there must be number i (pi[p[i]] = i).

Consider the permutation p = 








132

321
 and its inverse p-1 = 









213

321
. In the

inverse permutation the edges are oriented in the other direction.

1

2

3

1

2

3

permutation

p = (2, 3, 1)

1

2

3

1

2

3

inverse permutation

p
-1

 = (3, 1, 2)

Generate permutations

E-OLYMP 2169. Permutations Given a positive integer n, print all permutations

of the integers from 1 to n in lexicographical order.

► In the problem you should generate all permutations of numbers from 1 to n.

This can be done, for example, using the next_permutation function.

Use array m to generate permutations.

int m[10];

Read the value of n. Initialize the array m with the initial permutation 1 2 3…. n

starting from the first index.

scanf("%d",&n);

for(i = 1; i <= n; i++) m[i] = i;

Using the next_permutation function, generate all permutations: from the

lexicographically smallest to the lexicographically largest.

https://www.e-olymp.com/en/problems/1788
https://www.e-olymp.com/en/problems/2169

do

{

Print the next permutation on a separate line.

 for(i = 1; i <= n; i++)

 printf("%d ",m[i]);

 printf("\n");

} while(next_permutation(m+1,m+n+1));

E-OLYMP 1533. Anagram generation You are to write a program that has to

generate all possible words from a given set of letters.

Example: Given the word “abc”, your program should – by exploring all different

combination of the three letters – output the words “abc”, “acb”, “bac”, “bca”, “cab”

and “cba”.

In the word taken from the input file, some letters may appear more than once. For

a given word, your program should not produce the same word more than once, and the

words should be output in alphabetically ascending order.

► 1. What is the difference between lexicographic and alphabetical sorting?

2. Consider the string zAZaaZ. Sort the letters in alphabetical and lexicographic

order.

3. What STL function can be used to generate permutations of all letters in a word?

4. The function sort, by default, sorts the letters in a word in lexicographic order.

How to implement with it an alphabetical sorting?

5. Implement a comparator for alphabetical sort int lt(char a, char b),

which is passed as the third argument to the sort function.

6. How to find the alphabetically smallest permutation of letters in the string s?

Sort the characters of the input string in ascending order. Use the built-in

next_permutation function to generate all permutations. However, you should write

your own function to compare the characters. In standard (lexicographic) comparison,

any uppercase letter is less than any lowercase letter. That is, when sorting letters a, A,

z, Z, r, R, we get the word ARZarz. In this problem you should sort (and generate

permutations) in accordance with the alphabetical order AaBbCc… Zz, so it is

necessary to obtain AaRrZz from the letters a, A, z, Z, r, R.

For the string aAb (1-st test case) the smallest permutation would be Aab, and the

biggest would be baA.

The function lt will be used for sorting and generating permutations. It compares

two characters according to alphabetical order AaBbCc ... Zz.

int lt(char a, char b)

{

 if (toupper(a) != toupper(b)) return (toupper(a) < toupper(b));

 return (a < b);

}

https://www.e-olymp.com/en/problems/1533

Read the input string, calculate its length, and sort the characters alphabetically.

scanf("%s", &s);len = strlen(s);

sort(s,s+len,lt);

Print the current anagram (permutation of characters) and generate the next one

until its possible.

do {

 printf("%s\n",s);

} while(next_permutation(s,s+len,lt));

E-OLYMP 50. The cut number Vasylko wrote a number which is multiple of d

on a scrap of paper. His smaller brother Dmytro cut the number into k parts. Vasylko

decided to restore the number that he wrote. He remembered only number d. But there

was a problem. It is possible to make many numbers which are multiple of d.

How many numbers multiple of d can make Vasylko? He must use all parts to

make a number.

► Put the numbers of all parts into the array. Consider all possible gluing of the

available parts. Such full search is possible, since k < 9 and there will be no more than

9! different gluings. For each number obtained by gluing, check is it divisible by d.

Consider all possible gluings of three parts 13, 85 and 45. For each number

obtained, check whether it is divisible by d = 5.

13 85 45 138545

13 45 85 134585

45 13 85 451385

45 85 13 458513

85 13 45 851345

85 45 13 854513

Count the objects

E-OLYMP 9890. Balls and boxes Find the number of ways to put n different

balls into k boxes. You can put into each box any number of balls (including zero).

► Take the first ball. It can be placed in one of the k boxes available. That is, there

are k ways for putting the first ball into the box. Similarly, each next ball can also be put

into one of k boxes (there are k ways for each ball).

Therefore, there are k * k * … * k = kn ways to arrange all the balls in the boxes.

E-OLYMP 9594. ABA The string of letters is given. How many subsequences

“ABA” does it contain? The letters “ABA” don't have to be consecutive. But the order

of letters should be the same.

► Let s0s1…sn-1 be the input string. Let l[i] contains the number of letters A in

positions from zero to i-th inclusive. Let cnt be the number of letters A in the word.

Then to the right of position i there are cnt – l[i] letters A.

https://www.e-olymp.com/en/problems/50
https://www.e-olymp.com/en/problems/9890
https://www.e-olymp.com/en/problems/9594

A BA Y B AT A T B A Z A

 li = 3 cnt - li = 4
li * (cnt - li) = 3 * 4 = 12

si

A

If the letter B is in the i-th position, then to the left of it there are l[i] letters A, and

to the right (cnt – l[i]) letters A. The number of subsequences “ABA” in which the letter

B is in the i-th position, equals to l[i] * (cnt – l[i]).

Consider the second test case.

A B A Y B A T A T B B A Z A

2 4

A B A Y B A T A T B B A Z A

4 2

A B A Y B A T A T B B A Z A

1 5

A B A Y B A T A T B B A Z A

4 2

1 * 5 = 5

2 * 4 = 8

2 * 4 = 8

2 * 4 = 8

The number of subsequences “ABA” is

1 * 5 + 2 * 4 + 2 * 4 + 2 * 4 = 5 + 8 + 8 + 8 = 29

E-OLYMP 4538. Bob and balls Recently Bob learned that balls can be played in

a very entertaining game. In this game you want to stack the balls in the form of various

geometric shapes. Just now Bob is engaged in laying the balls in the form of an

equilateral triangle. But here's the thing: sometimes Bob do not have enough balls, and

he wants to know, what is the greatest side of the triangle for which it is enough balls?

Help Bob to count the value of n – the length of equilateral triangle for given number of

balls k.

Below given the example of placing the balls in the form of an equilateral triangle:

► If n is the length of the side of triangle, then for its complete packing it is

required 1 + 2 +… + n = n * (n + 1) / 2 balls.

https://www.e-olymp.com/en/problems/4538

1

2

3

4

1 + 2 + 3 + 4 = 10

There are k balls available. Solve the equation n * (n + 1) / 2 = k and round the

non-negative root down to the nearest integer.

Solve the quadratic equation: n2 + n – 2k = 0, d = 1 + 8k, n =   2/811 k .

The answer is the value   2/811 k .

E-OLYMP 1548. Diagonal The number of diagonals of an n-gon is not less

than N. What is the minimum possible value of n?

► Each point of the polygon is connected by segments with n – 1 other points.

These line segments form 2 sides and n – 3 diagonals. Since there are n points in the

polygon, and n – 3 diagonals get out from each point, the number of diagonals of a

convex n - gon is n * (n – 3) / 2 (each diagonal is counted twice).

If n * (n – 3) / 2 = N, then the value of n can be found from the quadratic equation

n2 – 3 * n – 2 * N = 0

The positive root of the equation is

2

893 N
n




It remains to round up the computed value. Since N  1015, the calculations should

be performed using long long data type.

Consider the second test case. For N = 100 we have

n = 






 

2

100893
 = 16

E-OLYMP 1539. How many points of intersection? We have two rows. There

are a dots on the top row and b dots on the bottom row. We draw line segments

connecting every dot on the top row with every dot on the bottom row. The dots are

arranged in such a way that the number of internal intersections among the line

segments is maximized. To achieve this goal we must not allow more than two line

segments to intersect in a point. The intersection points on the top row and the bottom

are not included in our count; we can allow more than two line segments to intersect on

those two rows. Given the value of a and b, your task is to compute P(a, b), the number

of intersections in between the two rows. For example, in the following

figure a = 2 and b = 3. This figure illustrates that P(2, 3) = 3.

https://www.e-olymp.com/en/problems/1548
https://www.e-olymp.com/en/problems/1539

► Let f(a, b) be the required number of intersection points. Obviously, f(1, b) = 0,

since for a = 1 no two segments intersect.

Consider the general case. Let x1, x2, …, xa be points on the first line, y1, y2, …, yb

be points on the second line. Connect point x1 with poinys y1, y2, …, yb. There will be no

intersection points on the segment x1y1. The segment x1y2 will contain the points of

intersection with the segments y1x2, y1x3, …, y1xa (a – 1 points in total). The segment x1yj

will contain the points of intersection with the segments yixk, where i < j, 2  k  a ((j –

1) * (a – 1) points in total). The number of intersection points that lie on the segments

outgoing from x1 is (0 + 1 + 2 + … + (b – 1)) * (a – 1) = b * (b – 1) / 2 * (a – 1).

x1 x2 . . . xa

y1 y2 yb. . .y3

So, out of f(a, b) points b * (b – 1) / 2 * (a – 1) points lie on segments outgoing

from x1, and the rest of the points lie on segments with ends at x2, …, xa. We have a

recurrent relation:

f(a, b) = b * (b – 1) / 2 * (a – 1) + f(a – 1, b)

Expanding it, we get:

f(a, b) = b * (b – 1) / 2 * (a – 1) + f(a – 1, b) =

b * (b – 1) / 2 * (a – 1) + b * (b – 1) / 2 * (a – 2) + f (a – 2, b) = ... =

b * (b – 1) / 2 * (a – 1) + b * (b – 1) / 2 * (a – 2) + ... + b * (b – 1) / 2 * 1 =

b * (b – 1) / 2 * ((a – 1) + (a – 2) + ... + 1) =

b * (b – 1) / 2 * a * (a – 1) / 2

Thus, the maximum number of intersection points is

 
2

1 aa
 *

 
2

1 bb

Consider the second test case, where a = 2, b = 3. The maximum possible number

of intersection points among the segments is 3 and this is shown in the figure:

Generate the sequences

E-OLYMP 4835. Without two consecutive ones Given positive integer n, print

all binary sequences of length n without consecutive ones, in lexicographical order.

► Let x be an integer. In binary representation number x contains two ones in a

row if x & (x << 1) is not zero.

Iterate in the variable x over the numbers from 0 to 2n – 1. If number x in the

binary representation does not contain two ones in a row, then output such binary

representation.

Read value of n.

scanf("%d",&n);

Iterate over the numbers from 0 to 2n – 1.

for(x = 0; x < (1 << n); x++)

{

If number x contains two ones in a row in its binary representation, then skip it.

 if (x & (x << 1)) continue;

In one line print the binary code of the number x from left to right as a sequence of

0 and 1.

 for(i = n - 1; i >= 0; i--)

 printf("%d ",(x >> i) & 1);

 printf("\n");

}

Consider the recursive solution.

#include <stdio.h>

int n;

int m[22];

void gen(int n, int pos)

{

 if (n <= 0)

 {

 for(int i = 0; i < pos + n; i++)

 printf("%d ",m[i]);

 printf("\n");

 return;

 }

 m[pos] = 0; gen(n-1,pos+1);

 m[pos] = 1; m[pos+1] = 0; gen(n-2,pos+2);

}

int main(void)

{

https://www.e-olymp.com/en/problems/4835

 scanf("%d",&n);

 gen(n,0);

 return 0;

}

E-OLYMP 1663. Bracket sequences Positive integer n (1 ≤ n ≤ 10) is given.

Print in alphabetical order all correct bracket sequences of length 2n, assuming that the

character '(' comes before ')' in the alphabet.

A correct bracket sequence is either an empty string, or a string like (S), where S is

a correct bracket sequence, or a string like S1S2, where S1 and S2 are correct bracket

sequences.

► Solve the problem by exhaustive search. Let s be a string where we’ll generate

the required sequences. It is initially empty. Let the variables left and right contain the

number of unused open and closed parentheses, respectively (initially left = right = n).

Then:

 If left > 0, we can append ‘(‘ to the string s.

 If right > 0, we can append ‘)‘ to the string s.

In this case, the number of already used open parentheses should not be less than

the number of closed ones. When left = right = 0, print the next correct bracket

sequence.

Function gen generates the sequences. Part of the already generated bracket

sequence is contained in string s. The variables left and right contain the number of

unused open and closed parentheses, respectively.

void gen(string s, int left, int right)

{

 if(left > right) return;

 if(left == 0 && right == 0)

 {

 printf("%s\n",s.c_str());

 return;

 }

 if(left > 0) gen(s + "(", left - 1, right);

 if(right > 0) gen(s + ")", left, right - 1);

}

The main part of the program. Read the value of n and start generating the bracket

sequences.

scanf("%d",&n);

gen("",n,n);

Generate the subsets

E-OLYMP 4106. Subsets generation The set s of cardinality n is given. It

contains all the elements in the range [1 .. n]. Generate all its subsets.

https://www.e-olymp.com/en/problems/1663
https://www.e-olymp.com/en/problems/4106

► In this problem it is necessary to generate all subsets of the given set. To do this,

we iterate over (in a loop of i) all numbers from 1 to 2n – 1. Represent the number i in

binary notation and consider its last n bits (possibly with leading zeros). A subset

corresponds to such a binary representation: if there is one in its k-th place, then the

number k (1 ≤ k ≤ n) is included in the subset. For example, if n = 3 and i = 2, then its

bit representation is 010 and the set {2} corresponds to it.

Consider the subsets for n = 3.

0 0 0 0 { }

1 0 0 1 { 1 }

2 0 1 0 { 2 }

3 2 1

3 0 1 1 { 2, 1 }

4 1 0 0 { 3 }

3 2 1

5 1 0 1 { 3, 1 }

6 1 1 0 { 3, 2 }

7 1 1 1 { 3, 2, 1 }

