
Articulaton points 
 

The articulation point of an undirected graph is a vertex which removal makes the 

graph disconnected. Removing a vertex also means removing of all the edges outgoing 

from it. 

 

Naive algorithm in O(V * (V + E)) 

For each vertex v of original graph: 

а) delete v from the graph; 

б) check if the graph is connected; 

в) return v back to graph; 

 

The articulation points for the next graph are: 1, 4, 7. 
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Optimal algorithm in O(V + E) 

The following algorithm finds all articulation points and is based on depth first 

search. The running time of the algorithm is O(n + m), where n is the number of vertices 

and m is the number of edges in the graph. 

 

Start the depth first search traversal from some vertex, that we’ll further call the 

root. 

1. Suppose when traversing in depth, we iterate over all edges from the vertex v ≠ 

root. If the current edge (v, to) is such that from the vertex to and from any of its 

descendants in the DFS tree there is no backward edge to any ancestor of the 

vertex v, then the vertex v is an articulation point. If the depth first search has 

looked through all the edges from the vertex v, and found the edges satisfying 

the above conditions, then the vertex v is not an articulation point. 

2. Consider now the remaining case v = root. This vertex is an articulation point if 

and only if it has more than one son in the depth first search traversal. (if, 

having left root along an arbitrary edge, we could not traverse the entire graph, 

then root is the articulation point). 
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In the left picture vertex 3 is an articulation point. From subtree with root at 3 you 

can’t go out (up) the subtree, because there is no back edges. 

In the right picture vertex 3 is not an articulation point. There is a back edge from 

6 to 1, from subtree with a root in 3 you can reach vertex 1 that is an ancestor of the 

vertex 3. 

 

Let d[v] be the time of entering the depth first search into the vertex v. Let’s 

introduce an array up[v], that will allow us to respond to the above requests. Define 

up[v] as minimum among: 

 time d[v] of entrance to the vertex v; 

 time d[p] of entrance to each vertex p, that is the endpoint of some back edge 

(v, p); 

 all values of up[to] for eah vertex to, that is the immediate son of v in dfs 

tree (for the tree edge (v, to)).  

 

Informally, one can assert that up[v] is equal to d[p] of the topmost vertex p of the 

dfs tree, that can be reached from the subtree v using back edges that are present only in 

this subtree. 

up[v] = min(d[v], d[p], up[to]), 

where (v, p) is a back edge, (v, to) is a tree edge. 
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up[v] = min( d[v], d[p], up[to])

 
 



There is a back edge from the vertex v or from one of its descendants to its ancestor 

if and only if there is such a such son to that up[to] < d[v]. That is, if the inequality 

up[to] ≥ d[v] holds for some tree edge (v, to), then the vertex v is an articulation point. 

If up[to] = d[v], then in the dfs subtree with vertex v there is a back edge that arrives 

exactly at v. 

For the initial vertex root, the specified criterion does not apply; for it, the number 

of direct sons in DFS tree should be counted. 

 

Root is an articulaton point if it has more that one son is DFS tree. 

Leaf can never be an articulaton point. 

If there exists a tree edge (v, to) such that up[to] ≥ d[v], then v is an articulation 

point. 
 

Consider the graph shown below. Start depth first search from the vertex 0. The 

edges of the dfs tree are in read bold lines. Each vertex has labels d[v] / up[v]. Graph has 

three back edges: (2, 0), (4, 1), and (6, 3). The labels up[v] are placed in the reverse 

order of dfs. 
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up[6] = min(d[6], d[3]) = min(7, 4) = 4. One back edge (6, 3), no outgoing tree 

edges. 

up[5] = min(d[5], up[6]) = min(6, 4) = 4. No outgoing back edges, one tree edge 

(5, 6). 

up[4] = min(d[4], d[1]) = min(5, 2) = 2. One back edge (4, 1), no tree edges. 

up[3] = min(d[3], up[4], up[5]) = min(4, 2, 4) = 2. No outgoing back edges, two 

tree edges (3, 4) and (3, 5). 

up[2] = min(d[2], d[0], up[3]) = min(3, 1, 2) = 1. One back edge (2, 0), one tree 

edge (2, 3). 

up[1] = min(d[1], up[2]) = min(2, 1) = 1. No outgoing back edges, one tree edge 

(1, 2). 

up[0] = min(d[0], up[1]) = min(1, 1) = 1. No outgoing back edges, one tree edge 

(0, 1). 
 



Vertex 3 will be an articulation point, since there is a tree edge (3, 5) for which 4 = 

up[5] ≥ d[3] = 4. Vertex 0 will not be a articulation point, since only one tree edge 

leaves it. 
 

Consider the next graph:  

d[v] / up[v]
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Vertex 3 will be the articulation point, since there is an edge (v, to) = (3, 4), for 

which 4 = up[4] ≥ d[3] = 4. 

Vertex 5 will be the articulation point, since there is an edge (v, to) = (5, 6) for 

which 7 = up[6] ≥ d[5] = 6. 
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Declare the adjacency matrix of the graph g, the array used where we’ll mark the 

visited vertices, as well as additional arrays d and up. 

 
#define MAX 100 

int g[MAX][MAX], used[MAX], d[MAX], up[MAX]; 

 

Run the depth first search from the vertex v. The ancestor of v is p. If v is the root 

of the dfs tree, set p = -1. In the variable children count the number of children at the 

root node. 
 

void dfs (int v, int p = -1) 

{ 

  int to, children; 

 



When entering the vertex v, mark it visited. Set the label d[v] equal to the current 

timestamp time. Initially set up[v] to be equal to d[v]. 
 

  used[v] = 1; 

  d[v] = up[v] = time++; 

  children = 0; 

 

Iterate over the vertices to that can be reached from v. For this, the element g[v][to] 

of the adjacency matrix must contain one. It is necessary to consider three cases: 

1. (v, to) is a tree edge, that we traverse in the opposite direction (in this case to 

= p) 

2. (v, to) is a back edge (in this case used[to] = 1 and to ≠ p) 

3. (v, to) is a tree edge (in this case used[to] = 0) 
 

  for (to = 0; to < n; to++)  

  { 

    if(!g[v][to]) continue; 

    if (to == p)  continue; 

 

If vertex to is visited, then (v, to) is a back edge. Recompute the value of up[v]. 
 

    if (used[to]) 

      up[v] = min (up[v], d[to]); 

    else  

    { 

 

Otherwise start the depth first search from the vertex to. (v, to) is a tree edge. 

Recompute up[v]. 
 

      dfs (to, v); 

      up[v] = min (up[v], up[to]); 

 

If up[to] ≥ d[v] and v is not a root (p ≠ -1), then the vertex v is an articulation point. 
 

      if ((up[to] >= d[v]) && (p != -1)) 

        printf("%d ",v); 

 

Count the number of vertices to, into which the depth first search is run from the 

vertex v. 
 

      children++; 

    } 

  } 

 

If v is a root (p = -1) and the number of its sons in dfs tree is greater than 1, then 

the vertex v is an articulation point. 
 

  if ((p == -1) && (children > 1)) 

   printf("%d ",v); 

} 

 



The main part of the program. Read the input graph. The first line contains the 

number of vertices n. It is followed by pairs of vertices that describe the edges of the 

graph. 

 
scanf("%d",&n); 

memset(g,0,sizeof(g)); 

while(scanf("%d %d",&a,&b) == 2) 

  g[a][b] = g[b][a] = 1; 

 

Set time to one and start the depth first search. 
 

time = 1; 

for(i = 0; i < n; i++) 

  if (!used[i]) dfs(i); 

 

E-OLYMP 1945. Articulation points The undirected graph is given. Find all its 

articulation points. 

► Search for the articulation points using the depth first search. For each vertex v, 

compute the labels d[v] / up[v]. A vertex v is an articulation point if there exists an edge 

(v, to) of the depth first search tree such that the inequality up[to] ≥ d[v] holds. This 

inequality means that from the vertex to, which is a son of v, along the back edges from 

the subtree with the vertex to, one can go no higher than the vertex v. 

 

Graph gven in a sample, has the form: 
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The edges of the depth first search tree are marked with bold lines. Near each 

vertex v there are labels d[v] / up[v]. The articulation points are highlighted in color. 

Vertex 1 is an articulation point because for edge (1, 4) up[4] ≥ d[1] (1 ≥ 1). 

Vertex 2 is an articulation point because for edge (2, 6) up[6] ≥ d[2] (2 ≥ 2). 

Vertex 3 is an articulation point because for edge (3, 8) up[8] ≥ d[3] (3 ≥ 3). 

 

Since the number of vertices in the graph is large, store the graph in an adjacency 

list. The array used is used to mark the already visited vertices. To solve the problem, 

we’ll use two additional arrays d and up. The list of vertices, that are articulation points, 

will be saved in the set ArtPoints. 
 
vector<vector<int> > graph; 

vector<int> used, d, up; 

set<int> ArtPoints; 

 

https://www.e-olymp.com/en/problems/1945


The function dfs starts the depth first search from the vertex v and searches for 

articulation points. If v is the root of the dfs tree, set p = -1. In the variable children 

count the number of children at the root node. Found articulation points are saved in set 

ArtPoints. 
 
void dfs (int v, int p = -1) 

{ 

  int i, to, children; 

 

When entering the vertex v, mark it visited. Set the label d[v] equal to the current 

timestamp time. Initially set up[v] to be equal to d[v]. 
 

  used[v] = 1; 

  d[v] = up[v] = time++; 

  children = 0; 

 

Iterate over the vertices to that can be reached from v. It is necessary to consider 

three cases: 

1. (v, to) is a tree edge, that we traverse in the opposite direction (in this case to 

= p) 

2. (v, to) is a back edge (in this case used[to] = 1 and to ≠ p) 

3. (v, to) is a tree edge (in this case used[to] = 0) 
 

 

  for (i = 0; i < graph[v].size(); i++)  

  { 

    to = graph[v][i]; 

    if (to == p)  continue; 

 

If vertex to is visited, then (v, to) is a back edge. Recompute the value of up[v]. 
 

    if (used[to]) 

      up[v] = min (up[v], d[to]); 

    else  

    { 

 

Otherwise start the depth first search from the vertex to. (v, to) is a tree edge. 

Recompute up[v]. 
 

      dfs (to, v); 

      up[v] = min (up[v], up[to]); 

 

If up[to] ≥ d[v] and v is not a root (p ≠ -1), then the vertex v is an articulation point. 
 

      if ((up[to] >= d[v]) && (p != -1)) ArtPoints.insert(v); 

 

Count the number of vertices to, into which the depth first search is run from the 

vertex v. 
 

      children++; 

    } 

  } 

 



If v is a root (p = -1) and the number of its sons in dfs tree is greater than 1, then 

the vertex v is an articulation point. 
 

  if ((p == -1) && (children > 1)) ArtPoints.insert(v); 

} 

 

The main part of the program. Read the undirected graph into adjacency list graph. 
 
scanf("%d %d",&n,&m); 

graph.resize(n+1); used.resize(n+1); 

d.resize(n+1); up.resize(n+1); 

for(i = 0; i < m; i++) 

{ 

  scanf("%d %d",&a,&b); 

  graph[a].push_back(b); graph[b].push_back(a); 

} 

 

Run the depth first search. Graph can be disconnected. 
 

time = 1; 

for(i = 1; i <= n; i++) 

  if (!used[i]) dfs(i); 

 

Print the number of articulation points, as well as them in ascending order. 
 

printf("%d\n",ArtPoints.size()); 

for(iter = ArtPoints.begin(); iter != ArtPoints.end(); iter++) 

  printf("%d\n",*iter); 

 

E-OLYMP 10224. Articulation points - Timestamps Undirected graph is given. 

Run depth first search from the given vertex v. Print the timestamps d[v] and up[v] for 

each vertex v in the increasing order of vertices. 

► Labels d[v] / up[v] are used to find articulation points. Perform a depth first 

search and set up the indicated labels. 

 

Place the labels in the graphs given in the first and second test cases. 
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E-OLYMP 2964. Magnetic Cushions The City of the Future is built up with 

skyscrapers. To move between them and transport parking some of skyscrapers triples 

are connected with triangular cushions made from unipolar magnets. Each cushion 

connects exactly 3 skyscrapers and a top view on it is a triangle with vertices in 

https://www.e-olymp.com/en/problems/10224
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skyscrapers. This allows moving freely between the skyscrapers. The pillows can be 

constructed at different levels, so one skyscraper can be connected with different 

couples using different pillows, so two skyscrapers can be connected with multiple 

pillows (either with different third skyscraper or with the same). For example, there may 

be two cushions at different levels between skyscrapers 1, 2 and 3, and moreover, a 

magnetic cushion between 1, 2 and 5. 

The system of magnetic pillows is organized so that you can use them to get from 

one skyscraper to any other in this city (from one pillow to another you can move inside 

a skyscraper), but maintaining each of them requires a lot of energy. 

Write a program that finds which magnetic pillows can not be removed from the 

city structure, because removal of even just one of them leads to the fact that there exist 

skyscrapers from which now you can not get to some other skyscrapers, and people will 

become very sad. 

► For the magnetic cushion, we introduce an additional vertex, connecting it to 

each vertex that is connected by this cushion. Let’s number the new vertices from n + 1 

to n + m. The constructed graph will contain n + m vertices. Next, find all articulation 

points with numbers greater than n. If vertex i (i > n) is an articulation point, then this 

means that switching off magnetic cushion number i – n is impossible without reporting 

a violation in the city. 

 

In the first sample there are 5 skyscrapers and 4 magnetic cushions, placed as 

shown below. 
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If pillow number 4 is removed, skyscraper number 5 will be cut off from the rest of 

the buildings. 

Let’s build a graph of 5 + 4 = 9 vertices as described in the analysis of the 

algorithm. The resulting graph has one articulation point 9, the number of which is 

greater than 5. Therefore, the pillow number 9 – 5 = 4 cannot be removed without 

breaking the connectivity in the city. 
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Bridges 
 

The bridge in the graph is an edge, which removing disconnects the graph (splits 

into two or more connected components). 

 

Theorem. An edge of a graph is a bridge if and only if it is not contained in any 

simple cycle. 

Proof. If an edge belongs to a simple cycle, then its ends are reachable from each 

other even after removing this edge, therefore, removing such an edge cannot lead to 

decomposition into several connected components. 

Conversely, if the graph remains connected after removing the edge (a, b), then 

there is a simple path from a to b that does not contain (a, b). By adding an edge (a, b) 

to this path, we get a simple cycle. 

 

Consequence. Back edge in dfs can’t be a bridge. This follows from the fact that 

any back edge is contained in some simple cycle. 

 

Start the depth first search, place the d[v] and up[v] labels. There is a back edge 

from a vertex v or its descendant to its ancestor if and only if there is a son to such that 

up[to] < d[v]. If for some tree edge (v, to) the equality up[to] = d[v] holds, then in the 

dfs subtree with the vertex v there is a back edge that comes exactly at v. If up[to] > 

d[v], then the edge (v, to) is a bridge. Any back edge can’t be a bridge. 
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The edge (1, 4) is a bridge since 2 = up[4] > d[1] = 1.  

 

If there exists a tree edge (v, to) such that up[to] > d[v], then (v, to) is a bridge. 



 

Function dfs runs depth first search from the vertex v. 

 
void dfs (int v, int p = -1) 

{ 

  int i, to; 

  used[v] = 1; 

  d[v] = up[v] = time++; 

  for (i = 0; i < graph[v].size(); i++)  

  { 

    to = graph[v][i]; 

    if (to == p)  continue; 

    if (used[to]) 

      up[v] = min (up[v], d[to]); 

    else  

    { 

      dfs (to, v); 

      up[v] = min (up[v], up[to]); 

      if (up[to] > d[v]) printf("%d %d\n",v,to); 

    } 

  } 

} 

 

Function FindBridges finds the bridges. 
 

void FindBridges(void) 

{ 

  time = 1; 

  for(int i = 1; i <= n; i++) 

    if (!used[i]) dfs(i); 

} 

 

E-OLYMP 1943. Bridges The undirected graph is given. Find all its bridges. 

► Start the depth first search, place the d[v] and up[v] labels. There is a back edge 

from a vertex v or its descendant to its ancestor if and only if there is a son to such that 

up[to] < d[v]. If for some tree edge (v, to) the equality up[to] = d[v] holds, then in the 

dfs subtree with the vertex v there is a back edge that comes exactly at v. If up[to] > 

d[v], then the edge (v, to) is a bridge. Any back edge can’t be a bridge. 

 

Graph, given in a sample, has the form: 
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Since the number of vertices in the graph is large, we’ll store the graph as an 

adjacency list graph. The array used is used to mark the already visited vertices. To 

solve the problem, we’ll use two additional arrays d and up. In the set of Bridges, we’ll 

https://www.e-olymp.com/en/problems/1943


collect the numbers of the edges that are bridges. For each input edge (a, b), remember 

its number in the mapping mp. 
 

vector<vector<int> > graph; 

vector<int> used, d, up; 

set<int> Bridges; 

map<pair<int,int>, int> mp; 

 

Function Edge returns the edge, the pair of vertices (a, b), where a < b. 
   

pair<int,int> Edge(int a, int b) 

{ 

  if (a > b) swap(a,b); 

  return make_pair(a,b); 

} 

 

Function dfs runs depth first search from the vertex v. Place the labels d[v] and 

up[v]. The vertex p is the ancestor of v in the search tree. 
 

void dfs (int v, int p = -1) 

{ 

  used[v] = 1; 

  d[v] = up[v] = time++; 

  for (int i = 0; i < graph[v].size(); i++)  

  { 

    int to = graph[v][i]; 

    if (to == p)  continue; 

    if (used[to]) 

      up[v] = min (up[v], d[to]); 

    else  

    { 

      dfs (to, v); 

      up[v] = min (up[v], up[to]); 

      if (up[to] > d[v]) Bridges.insert(mp[Edge(v,to)]); 

    } 

  } 

} 

 

Function FindBridges finds the bridges. 
 

void FindBridges(void) 

{ 

  time = 1; 

  for(int i = 1; i <= n; i++) 

    if (!used[i]) dfs(i); 

} 

 

The main part of the program. Read the input graph. For each edge (a, b) store its 

number in the mapping mp. We need this so that we can print the bridges not as pairs of 

vertices they connect, but as the numbers of the input edges. 
 

scanf("%d %d",&n,&m); 

graph.resize(n+1); used.resize(n+1); 

d.resize(n+1); up.resize(n+1); 

for(i = 1; i <= m; i++) 



{ 

  scanf("%d %d",&a,&b); 

  graph[a].push_back(b); graph[b].push_back(a); 

  mp[Edge(a,b)] = i; 

} 

 

Find the bridges. The numbers of the edges that are bridges are stored in the set 

Bridges. 
 

FindBridges(); 

 

Print the number of bridges. On the next line print the numbers of the edges that 

are bridges in ascending order. 
 

printf("%d\n",Bridges.size()); 

for(iter = Bridges.begin(); iter != Bridges.end(); iter++) 

  printf("%d ",*iter); 

printf("\n"); 

 

Biconnected components 
 

A graph without bridges is called biconnected. The maximum biconnected 

subgraph of a graph is called a biconnected component or block. Note that any two 

different biconnected components either do not have common vertices, or have one 

common vertex, which is the articulation point. 

 

Finding the articulation points and biconnected components of a given graph is 

important when studying the reliability of communication and transport networks. 

 

There are: 

 vertex biconnectivity (without articulation points) 

 edge biconnectivity (without bridges) biconnectivity. 

 

Graph below contains: 

 Articulation points: u, v. 

 Bridges: (u, v). 

 Blocks: {a, b, w}, {b, u, w}, {a, b, u, w}, {c, d, v}.  
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Theorem. If the vertex is incident to the bridge and is not a hanging, then it will be 

the articulation point. 

 

Theorem. Let each vertex of the graph v be labeled with d[v] and up[v] using depth 

first search. Then graph will contain exactly as many maximal edge biconnected 

components as there are vertices v for which d[v] = up[v]. 

 

The following program prints edge biconnected components. When traversing the 

graph using dfs, we’ll store the traversed vertices in the stack. Then, upon completion of 

the computation the label up[v], starting from the top of the stack and up to v, there will 

be the vertices of the graph that belong to one edge biconnected component. 

 
void dfs (int v, int p = -1) 

{ 

  int i, to, y; 

  used[v] = 1; 

  d[v] = up[v] = time++; 

  _Stack.push_back(v); 

  for (i = 0; i < graph[v].size(); i++)  

  { 

    to = graph[v][i]; 

    if (to == p)  continue; 

    if (used[to]) 

      up[v] = min (up[v], d[to]); 

    else  

    { 

      dfs (to, v); 

      up[v] = min (up[v], up[to]); 

    } 

  } 

 

The equality d[v] = up[v] holds for exactly as many vertices v as there are edge 

biconnected components in the graph. Moreover, for each biconnected component, there 

is exactly one vertex with the specified property. Print the contents of the stack starting 

from the top of the stack and up to v. 
 

  if (d[v] == up[v]) 

  { 

    printf("Biconnected Component:"); 

    while(1) 

    { 

      y = _Stack.back(); _Stack.pop_back(); 

      printf(" %d",y); 

      if (y == v) break; 

    } 

    printf("\n"); 

  } 

} 

 

Run the depth first search on the graph. Vertices in the graph are numbered from 1 

to n. 

 



time = 1; _Stack.clear(); 

for(i = 1; i <= n; i++) 

  if (!used[i]) dfs(i); 
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The graph contains three edge biconnected components. Exactly three vertices v 

have the equality d[v] = up[v] (for vertices 1, 4, 9). 

 

E-OLYMP 2622. Reliable nets T You’re in charge of designing a campus 

network between buildings and are very worried about its reliability and its cost. So, 

you’ve decided to build some redundancy into your network while keeping it as 

inexpensive as possible. Specifically, you want to build the cheapest network so that if 

any one line is broken, all buildings can still communicate. We’ll call this a minimal 

reliable net. 

► A network is reliable if the graph that represents it is doubly edge connected. 

Biconnectivity is checked by depth first search – to ensure it, the absence of bridges in 

the graph is necessary. If the input graph is not biconnected, then the required network 

does not exist. In the case of biconnectivity, graph allows the presence of articulation 

points. 

Using dynamic programming and masks, iterate over all the edges and try to 

remove them from the input graph. That is, iterate over all possible subgraphs. As soon 

as the next subgraph is no longer biconnected (it contains a bridge), stop the search. 

Among all biconnected subgraphs, look for the one that has the lowest cost. 

 

Consider the first graph from the sample. The minimum reliable network is shown 

on the right. The graph on the right does not contain bridges, its cost is 6. 
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The input graph is stored in the adjacency matrix g. The arrays used, d and up are 

used to check if the graph is biconnected. The cell best[mask] stores the minimum 

network cost that can be formed from the edges specified by the mask mask. 
 

#define INF 0x3F3F3F3F 

#define MaxV 30 

int g[MaxV][MaxV]; 

int used[MaxV], d[MaxV], up[MaxV]; 

int best[1<<20]; 

 

Store the list of edges of the input graph in the array of structures E. 
 

struct Edge 

{ 

  int u, v, dist; 

} E[21]; 

 

Function dfs that runs depth first search, checks for bridges in the graph. If a 

bridge is present, the variable IsBridge is set to 1. 
 

void dfs (int v, int p = -1) 

{ 

  if (IsBridge) return; 

 

  used[v] = 1; 

  d[v] = up[v] = time++; 

 

  for (int to = 1; to <= n; to++)  

  { 

    if ((to == p) || !g[v][to]) continue; 

    if (used[to]) 

      up[v] = min (up[v], d[to]); 

    else  

    { 

      dfs (to, v); 

      up[v] = min (up[v], up[to]); 

      if (up[to] > d[v]) IsBridge = 1; 

    } 

  } 

} 

 

Function IsBiconnected returns 1, if graph is biconnected. For this, there must be 

no bridges in the graph. 
 

int IsBiconnected(void) 



{ 

  time = 1; IsBridge = 0; 

  memset(used,0,sizeof(used)); 

  memset(d,0,sizeof(d));  

  memset(up,0,sizeof(used)); 

 

  for(int i = 1; i <= n; i++) 

  { 

    if (!used[i]) dfs(i); 

    if (IsBridge) break; 

  } 

  return !IsBridge; 

} 

 

Compute the minimum network cost that can be formed from the edges specified 

by the mask mask. The length of all edges of subgraph specified by mask equals to 

CurLen. 
 

int go(int mask, int CurLen) 

{ 

  int i, opt; 

 

If the value of best[mask] is already calculated (it is not equal to INF), then we 

return it. If the current subgraph is not biconnected, then stop the search process, the 

value of best[mask] is set to INF – 1, which is considered already calculated. 
 

  if(best[mask] != INF) return best[mask]; 

  if (!IsBiconnected()) return best[mask] = INF - 1; 

  best[mask] = CurLen; 

 

Iterate over the edges included in the subgraph. Remove only one i-th edge from 

the graph and recursively solve the problem for the subgraph specified by the mask 

mask XOR 2i. The length of the edges of this graph will be equal to CurLen – E[i].dist. 
 

  for(i = 0; i < m; i++) 

  { 

    if (mask & (1 << i)) 

    { 

      g[E[i].u][E[i].v] = g[E[i].v][E[i].u] = 0; 

      opt = go(mask ^ (1 << i),CurLen - E[i].dist); 

      if (opt < best[mask]) best[mask] = opt; 

      g[E[i].u][E[i].v] = g[E[i].v][E[i].u] = 1; 

    } 

  } 

  return best[mask]; 

} 

 

The main part of the program. Read the edges of the graph and store them in the 

array E. Build the adjacency matrix g. The edge lengths are stored only in array E. 

Compute the lengths of all edges in the variable TotLen. 
 

  while(scanf("%d %d",&n,&m), n + m) 

  { 

    memset(best,0x3F,sizeof(best)); 



    memset(g,0,sizeof(g));  

    res = INF; 

    TotLen = 0; 

 

    for(i = 0; i < m; i++) 

    { 

      scanf("%d %d %d",&E[i].u ,&E[i].v,&E[i].dist); 

      g[E[i].u][E[i].v] = g[E[i].v][E[i].u] = E[i].dist; 

      TotLen += E[i].dist; 

    } 

 

Find the answer and print it depending on whether the required reliable network 

exists. For the graph containing all edges corresponds a mask 2m – 1, consisting of m 

units. 
 

    res = go((1 << m) - 1, TotLen); 

    if (res >= INF - 1)  

      printf("There is no reliable net possible for test case 

%d.\n",cs++); 

    else printf("The minimal cost for test case %d is 

%d.\n",cs++,res); 

  } 

 


