
Topological sort

The problem of topological sorting of a graph is to indicate such a linear order on

its vertices so that any edge leads from a vertex with a lower number to a vertex with a

higher number. Obviously, if there are cycles in the graph, then there is no such order.

Example. Consider a graph that does not contain cycles:

4

6

2

5

3

1

Sort topologically its vertices: 2, 3, 5, 4, 6, 1.

4 62 53 1

Тheorem. An acyclic graph always has a vertex without incoming edges.

Proof. Assume the opposite, let an edge enters each vertex. For an arbitrary vertex

x, we denote one of these edges by (prev[x], x). The sequence x, prev[x], prev2[x], … is

infinite, and the number of vertices in the graph is finite. Consequently, some vertex y

will occur twice in this sequence. Consider the part of this sequence between

repetitions: y, prev[y], prev2[y], …, y. Expanding this sequence in the opposite direction,

we get a cycle in the graph. We came to a contradiction.

Perform a topological sort of the vertices. The very first vertex in this topological

order hasn’t incoming edges.

Theorem. The topological sort of vertices in a graph is possible if and only if it

does not contain cycles.

Topological sort implementation using depth first search

The problem of topological sort can be solved using depth first search. Initially, all

vertices are white. When the dfs enters the vertex, it becomes gray. When the vertex is

processed, it turns black. The order of the vertices in a topological sort is the inverse

order in which the vertices become black.

The complexity of topological sort algorithm equals to the time it takes to traverse

all the vertices of the graph using dfs algorithm, that is O(n + m).

Example. Start a depth first search on the graph. Next to each vertex v, place the

labels d[v] / f[v]. To determine the topological sort order, one should sort the graph

vertices in descending order of labels f[v].

4

6

2

5

3

1 1/2

3/12

4/11

5/10

6/9

7/8

The first vertex to be colored black will be 1. It will be the last vertex in

topological order. The second vertex colored black will be 6. The last will be vertex 2.

v

f[v]

2

12

3

11

5

10

4

9

6

8

1

2

2 3 5 4 6 1

Exercise. Look at the next graph and answer the questions:

2 53

4

1

 Find any topological ordering for the graph vertices;

 Find lexicographically minimum topological sort;

 Find lexicographically maximum topological sort;

 Is the topological sort unique? Give an example of the graph with unique

topological sort.

E-OLYMP 1948. Topological sort The directed unweighted graph is given. Sort

topologically its vertices.

https://www.e-olymp.com/en/problems/1948

► Topological sorting is performed using the depth first search. Initially, all

vertices are white. When the dfs enters the vertex, it becomes gray. When the vertex is

processed, it turns black. The order of the vertices in a topological sort is the inverse of

the order in which the vertices become black. That is, the first (last) fully processed

vertex in dfs will be the last (first) in the topological sort.

The vertices of a graph cannot be topologically sorted if there is a cycle in the

graph. Since the graph is directed, there should be no edges going to the gray vertices

during dfs.

The graph shown in the sample, has the form:

21

4 56

3

1 / 6 2 / 5

3 / 4

7 / 8

9 / 12 10 / 11

Place the labels d[v] / f[v] near each vertex v. Topologically sorted vertices are

arranged in descending order of labels f[v].

v

f[v]

4

12

6

11

3

8

1

6

2

5

5

4

Since the number of vertices in the graph is large, store the graph as an adjacency

list g. Store the vertex labels in the array used:

 used[i] = 0, if vertex i is not visited yet (vertex is white);

 used[i] = 1, if vertex i is visited already, but its processing is not finished yet

(vertex is gray);

 used[i] = 2, if vertex i is processed already (vertex is black);

Store the vertices in array top in the order of completion of their processing during

dfs.

vector<vector<int> > g;

vector<int> used, top;

Function dfs implements the depth first search from the vertex i.

void dfs(int i)

{

We entered the vertex i. Make it gray.

 used[i] = 1;

Iterate over the vertices to, where we can go from i.

 for(int j = 0; j < g[i].size(); j++)

 {

 int to = g[i][j];

If the directed edge (i, to) goes to the gray vertex, then graph contains a cycle.

 if (used[to] == 1) Error = 1;

If the vertex to is not visited yet, run recursively dfs from it.

 if (used[to] == 0) dfs(to);

 }

Finish processing the vertex i. Make it black and add it to the array top.

 used[i] = 2;

 top.push_back(i);

}

The main part of the program. Read the input data. Construct the adjacency list of

the graph.

scanf("%d %d",&n,&m);

g.resize(n+1); used.resize(n+1);

for(i = 0; i < m; i++)

{

 scanf("%d %d",&a,&b);

 g[a].push_back(b);

}

Run the depth first search on directed graph.

for(i = 1; i <= n; i++)

 if (!used[i]) dfs(i);

If graph contains a cycle (during dfs Error = 1 is set), then print -1.

if (Error) printf("-1");

else

Print the vertices of the graph in the reverse order of the one in which they were

pushed into the array top.

 for(i = n - 1; i >= 0; i--)

 printf("%d ",top[i]);

printf("\n");

Topological sort implementation using Kahn algorithm

Compute the incoming degree for each vertex. Push the vertices with zero

incoming degree into the queue. While the queue is not empty, pop the vertex out of the

queue and add it to the end of topological order. For each vertex v removed from the

queue, simulate the removal of all edges (v, u) outgoing from it. That is, for each such

edge, the incoming degree of the vertex u should be decreased by one. If after this

reduction the incoming degree of the vertex u becomes zero, push u into the queue. The

algorithm runs until the queue becomes empty. If all the vertices have been queued,

then the topological order is constructed. Otherwise, after removing some vertices, we

get a graph without vertices of degree zero. This is possible only if there is a cycle in the

graph. In this case there is no topological ordering.

4

6

2

5

3

1

1

1

1

3

0

3

2

4

6

5

3

1

1

1

0

2

2

2, 3

4

6

5

1

1

0

1

2

2, 3, 5

4

6

1

0

1

1

2, 3, 5, 4

6

1
1

0

2, 3, 5, 4, 6

1
0

2, 3, 5, 4, 6, 1

The input graph is stored in the adjacency list graph. Store the incoming degrees of

vertices in the array InDegree. Push the topologically sorted vertices of the graph into

the array top.

vector<vector<int> > graph;

vector<int> InDegree, top;

deque<int> q;

int i, j, a, b, n, m, v, to;

Read the input data.

scanf("%d %d",&n,&m);

graph.resize(n+1);

InDegree.resize(n+1);

For each edge (a, b) increase InDegree[b] by 1.

for(i = 0; i < m; i++)

{

 scanf("%d %d",&a,&b);

 graph[a].push_back(b);

 InDegree[b]++;

}

Push all vertices with incoming degree zero into the queue q.

for(i = 1; i < InDegree.size(); i++)

 if (!InDegree[i]) q.push_back(i);

Continue the algorithm until the queue q is not empty.

while(!q.empty())

{

Pop the vertex v from the queue and push it to the end of the topological order.

 v = q.front(); q.pop_front();

 top.push_back(v);

Delete the edges (v, to) from the graph. For each such edge decrease the input

degree of the vertex to. If the degree of the vertex to becomes zero, push it into the

queue, from where it will be pushed into the topological order list.

 for(i = 0; i < graph[v].size(); i++)

 {

 to = graph[v][i];

 InDegree[to]--;

 if(!InDegree[to]) q.push_back(to);

 }

}

If not all n vertices are pushed into the array top, then graph contains a cycle and

topological sort is impossible.

if (top.size() < n)

 printf("-1\n");

else

{

Print the vertices of the graph in topological order.

 for(i = 0; i < top.size(); i++) printf("%d ",top[i]);

 printf("\n");

}

E-OLYMP 10235. Ordering tasks John has n tasks to do. Unfortunately, the

tasks are not independent and the execution of one task is only possible if other tasks

have already been executed.

► In the problem it is necessary to perform topological sorting of the vertices of

the directed graph.

Consider the graphs presented in sample.

21

4 56

3 21

3

Possible topological sorts for the first graph are:

 3, 1, 4, 2, 6, 5;

 1, 3, 4, 6, 2, 5;

 4, 1, 6, 3, 2, 5;

E-OLYMP 10651. The smallest topological sort The directed unweighted graph

is given. Find the lexicographically smallest topological ordering of its vertices.

► In this problem one must find the lexicographically smallest topological sort.

Let’s use the Kahn algorithm. Instead of the classic queue, we’ll use a priority queue or

a set.

Initially insert to the set the vertices that have no incoming edges (from which the

topological sort can start). At each iteration, we’ll extract the smallest element from the

set – this will ensure the construction of the lexicographically smallest topological sort.

The graph from example has the next form:

21

4 56

3

1 / 6 2 / 5

3 / 4

7 / 8

9 / 12 10 / 11

The lexicographically smallest topological sort is

1, 3, 4, 2, 6, 5

The lexicographically biggest topological sort is

4, 6, 3, 1, 2, 5

E-OLYMP 10652. The unique topological sort The directed unweighted graph is

given. Find out if it has a unique topological ordering of its vertices.

►.

E-OLYMP 10648. Avengers NurlashKo, Nurbakyt, and Zhora are members of

the last ninja clan fighting against even emperor Ren’swild reign. After devastating

https://www.e-olymp.com/en/problems/10235
https://www.e-olymp.com/en/problems/10651
https://www.e-olymp.com/en/problems/10652
https://www.e-olymp.com/en/problems/10648

defeat in an open battle, they decided split their army into three camps and wage a

guerrilla war.

One Emperor Ren’s ridiculous reforms allows to pass roads between cities only in

one direction. Also, he chose the allowed directions of the roads in such way, so that it’s

impossible to start and return to the same city after passing several roads.

Right now, the clan is deciding where to place their camps. Emperor Ren’s army

makes regular raids inspecting some path. If Army crushes all three of the camps during

their raid, clan wouldn’t be able to regroup and would loose the war. Help the clan to

choose three cities, so that there is no path that passes through all three of these cities.

► In the graph, you need to find any three vertices that do not lie on the same

path.

Let’s start Kahn’s algorithm for topological sort. Find two vertices that will be in

the queue at the same time. In this case, there is no path where these two vertices lie.

Adding any third vertex to them, we get the answer.

If, when implementing the Kahn algorithm, the queue always contains at most one

vertex, then all the vertices of the graph lie on the same path.

The graphs from the test cases have the form:

1 2 3 1

2

3

In the first example, all three vertices lie on the same path. In the second example,

three vertices do not lie on the same path.

E-OLYMP 4861. Sections in Makhovniki Little Peter loves computers and wants

to learn programming. In the small town of Makhovniki, where he lives, there is a

network of programming sections on a wide variety of subjects. When Peter went to

sign up, he saw a large list of n sections. Peter wants to be a comprehensively developed

person, so he was going to learn in all these sections. But when he was going to sign up

for all the classes at once, it turned out that everything was not so simple. First of all, at

one time it is allowed to study only in one of these n sections. Secondly, some teachers

put forward input requirements for the knowledge of students, consisting in the

knowledge of the courses of some other sections!

Peter wants to become a great programmer, so such trifles do not stop him. Indeed,

all he needs is just to make up the correct order for visiting sections, in order to meet all

the input requirements – this is a very simple task, accessible even to a very

inexperienced programmer.

Before sitting down to make up the order of visiting the sections, Peter carefully

read the conditions of study and found another important point. It turns out that in order

to attract schoolchildren, in all sections there is a system of encouraging pupils with

candies. This means that at the end of the next round, the student is given several boxes

of chocolates, more and more with each passing section. On the other hand, in each

https://www.e-olymp.com/en/problems/4861

section the number of candies in a box is different, depending on the complexity of the

course. More specifically – for passing the i-th section, if this section goes in the general

list with the number j, the student is given as much ni-1 * j candies – such generous

people are programmers. Peter decided to combine the useful with the pleasant – now

he wants to choose such an order of visiting sections so that to get as many candies as

possible, however this task is no longer within his power. Help the future great man find

such an order.

► Let (p0, p1, p2, …, pn-1) be the order in which Petya will visit the sections. Then

you should maximize the value

n0 * p0 + n1 * p1 + n2 * p2 + … + nn-1 * pn-1

Since n is fixed in the problem, the specified value will be maximum when the

sequence (pn-1, … p2, p1, p0) is lexicographically the largest.

Construct a reverse graph. Find the lexicographically largest topological sort in it

and print it in reverse order. The number of candies eaten for the constructed sequence

will be the maximum.

The graph from the statement has the form

lexicographically biggest

6, 4, 5, 3, 1, 2

2

4

1

3

5

6 2

4

1

3

5

6

For the reverse graph, the lexicographically largest topological sort is (6, 4, 5, 3, 1,

2). The order of attending the sections will be in the reverse order: (2, 1, 3, 5, 4, 6).

E-OLYMP 9044. Lonely island There are many islands that are connected by

one-way bridges, that is, if a bridge connects islands a and b, then you can only use the

bridge to go from a to b but you cannot travel back by using the same. If you are on

island a, then you select (uniformly and randomly) one of the islands that are directly

reachable from a through the one-way bridge and move to that island. You are stuck on

an island if you cannot move any further. It is guaranteed that after leaving any island it

is not possible to come back to that island.

Find the island that you are most likely to get stuck on. Two islands are considered

equally likely if the absolute difference of the probabilities of ending up on them is

≤ 10-9.

► Let’s start the Kahn’s algorithm for topological sort. For each vertex v, compute

the number of incoming InDegree[v] and outgoing OutDegree[v] edges from it. Let us

denote by prob[v] the probability to be at the vertex v. Initially, prob[r] = 1 for the

starting vertex r, for other vertices prob[v] = 0.

https://www.e-olymp.com/en/problems/9044

Next, for each vertex v, in the order of topological sorting, iterate over the edges (v,

to) and increase the value of prob[to] by prob[v] / OutDegree[v].

You can get stuck at the vertex v, for which OutDegree[v] = 0. Find the maximum

value among prob[v], for which OutDegree[v] = 0.

Simulate Kahn’s algorithm for the graph given in the problem. For each vertex of

the graph we assign the probability to be there. Initially (figure on the left) the

probability to be at all vertices is 0, except for the starting first, for which probability is

1.

The first vertex in topological order will be 1. Four edges comes out of it, therefore

the probability prob[1] = 1 will be divided between 4 vertices: the value prob[1] / 4 =

0.25 should be added to prob[2], prob[3], prob[4] and prob[5].

1 2

3

4

5

1

0

0

0

0
1 2

3

4

5

1

0.25

0.25

0.25

0.25

Next, vertex 2 will be added to the topological order. Two edges come out of it.

prob[2] / 2 = 0.125 should be added to prob[4] and prob[5] (left figure below). The next

vertex will be 3. One edge comes out of it. Add prob[3] / 1 = 0.25 to prob[4] (figure on

the right). Then vertices 4 and 5 will be processed, but they do not contain outgoing

edges and the probabilities will not be recalculated.

1 2

3

4

5

1

0.25

0.25

0.375

0.375

1 2

3

4

5

1

0.25

0.25

0.625

0.375

A dead-end vertex (that has no outgoing edges) with the maximum probability to

be there has number 4. There is only one such vertex in the graph.

