
Minimum spanning tree

A spanning tree is a subset of Graph, which has all the vertices covered with

minimum possible number of edges. Hence, a spanning tree does not have cycles and it

cannot be disconnected.

1

2 3

Graph

1

2 3

1

2 3

1

2 3

Spanning trees

We found three spanning trees of one complete graph. A complete undirected

graph have nn – 2 number of spanning trees, where n is the number of nodes. In the above

example n = 3, hence 33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree.

Following are a few properties of the spanning tree connected to graph.

 A connected graph can have more than one spanning tree.

 All possible spanning trees of graph, have the same number of edges and

vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph

disconnected, i.e. the spanning tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the

spanning tree is maximally acyclic.

Mathematical Properties of Spanning Tree

 Spanning tree has n – 1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e – n + 1 edges, we can

construct a spanning tree.

 A complete graph have nn – 2 number of spanning trees.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has

minimum weight than all other spanning trees of the same graph. In real-world

situations, this weight can be measured as distance, traffic load or any arbitrary value

denoted to the edges.

1

2 3

minimum

spanning tree

1 2

3

1

2 3

1 2

graph

More generally, any edge-weighted undirected graph (not necessarily connected)

has a minimum spanning forest, which is a union of the minimum spanning trees for its

connected components.

Below given graphs and its minimum spanning trees.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32

Kruskal’s algorithm

Assume that we have a connected, undirected graph G = (V, E) with a weight

function w : E → R, and we wish to find a minimum spanning tree for G.

The greedy strategy is captured by the following “generic” algorithm, which grows

the minimum spanning tree one edge at a time. The algorithm manages a set of edges A,

maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree

At each step, we determine an edge (u, v) that can be added to A without violating

this invariant, in the sense that A ∪ {(u, v)} is also a subset of a minimum spanning tree.

We call such an edge a safe edge for A, since it can be safely added to A while

maintaining the invariant.

GENERIC-MST(G, w)

A ← ∅

while A does not form a spanning tree

 do find an edge (u, v) that is safe for A

 A ← A ∪ {(u, v)}

return A

Kruskal’s algorithm is based directly on the generic minimum-spanning-tree

algorithm. It finds a safe edge to add to the growing forest by finding, of all the edges

that connect any two trees in the forest, an edge (u, v) of least weight. Kruskal’s

algorithm is a greedy algorithm, because at each step it adds to the forest an edge of

least possible weight.

The implementation of Kruskal’s algorithm is like the algorithm to compute

connected components. It uses a disjoint-set data structure to maintain several disjoint

sets of elements. Each set contains the vertices in a tree of the current forest. The

operation FIND-SET(u) returns a representative element from the set that contains u.

Thus, we can determine whether two vertices u and v belong to the same tree by testing

whether FIND-SET(u) equals FIND-SET(v). The combining of trees is accomplished by

the UNION procedure.

MST-KRUSKAL(G, w)

A ← ∅

for each vertex v ∈ V[G]

 do MAKE-SET(v)

sort the edges of E into nondecreasing order by weight w

for each edge (u, v) ∈ E, taken in nondecreasing order by weight

 do if FIND-SET(u) ≠ FIND-SET(v)

 then A ← A ∪ {(u, v)}

 UNION(u, v)

return A

E-OLYMP 981. Minimum spanning tree Find the weight of minimum spanning

tree for a weighted undirected connected graph.

► In this problem you must find the weight of the minimum spanning tree using

Kruskal's algorithm.

The graph given in the sample has a form:

1 2

3

1

23

Declare the structure of the graph edge (a pair of vertices and the weight of the

edge). Declare the vector of edges e.

struct Edge

{

 int u, v, dist;

};

vector<Edge> e;

https://www.e-olymp.com/en/problems/981

Declare an array parent used by the disjoint set system.

vector<int> parent;

The function Repr finds a representative of the set that contains vertex n.

int Repr(int n)

{

 while (n != parent[n]) n = parent[n];

 return n;

}

Function Union unites sets that contain elements x and y.

int Union(int x, int y)

{

 x = Repr(x); y = Repr(y);

 if (x == y) return 0;

 parent[y] = x;

 return 1;

}

The function lt is a comparator for sorting edges.

int lt(Edge a, Edge b)

{

 return (a.dist < b.dist);

}

The main part of the program. Initialize the parent array.

scanf("%d %d",&n,&m);

parent.resize(n + 1);

for (i = 1; i <= n; i++) parent[i] = i;

Read the edges of the graph.

e.resize(m);

for (i = 0; i < m; i++)

 scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].dist);

Sort the edges in increasing order of their weights.

sort(e.begin(), e.end(), lt);

Start the Kruskal algorithm that constructs the minimum spanning tree.

res = 0;

for(i = 0; i < m; i++)

 if (Union(e[i].u,e[i].v)) res += e[i].dist;

Print the weight of the minimum spanning tree.

printf("%d\n",res);

E-OLYMP 7531. Landline telephone network The mayor of RMRCity wants to

create a secure landline telephone network for emergency use in case of serious

disasters when the city is cut off from the outside world. Some pairs of buildings in the

city can be directly connected with a wire telephone line and the municipality engineers

have prepared an estimate of the cost of connecting any such pair.

The mayor needs your help to find the cheapest network that connects all buildings

in the city and satisfies a particular security measure that will be explained shortly. A

call from a building A to another building B may be routed through any simple path in

the network (i.e., a path that does not have any repeated building). There are also some

insecure buildings that one or more persons with serious criminal records live in. The

mayor wants only communications intended for these insecure buildings to reach them.

In other words, no communication from any building A to any building B should pass

through any insecure building C in the network (where C is different from A and B).

► Find the value of the minimum spanning tree for all buildings except unsafe

ones. Then connect each unsafe building to the nearest safe one. The required network

cannot be constructed if the graph is disconnected.

Separately, analyze the case when there are no safe buildings in the city. If there is

only one unsafe building, then the answer is 0, if there are two unsafe buildings, then

the answer equals to the distance between them. If there are more than 2 unsafe

buildings, then the desired network does not exist.

Let’s look at the first sample. The unsafe house has number 1. Build the MST for

the vertices 2, 3, 4 – its value is 5. Connect the house number 1 to MST. The cost of the

cheapest network is 6.

1 2

43

2

1

3

41

1

Let’s consider the second sample. Unsafe house numbers are 1 and 2. Unsafe

house number 1 must be directly connected to a safe house, which is impossible for the

given network. Therefore, the answer is impossible.

1 2 3 4
1 7 5

E-OLYMP 6576. Road In one country, there aren cities, numbered 1 to n. A civil

engineer has to build public roads that connect all the cities together, i.e. it must be

possible to travel from all cities to any other cities, maybe going through multiple cities.

His team has surveyed several routes (candidate road between any two cities). Each

https://www.e-olymp.com/en/problems/7531
https://www.e-olymp.com/en/problems/6576

route is a bidirectional connection between two cities. He can build a bidirectional road

on the surveyed route for a specific cost (The shorter the route is the cheaper the road).

This engineer has never planned a road system in advance. He would just pick one

of the routes based on his preference, and build a road until all the cities are connected.

Right now this engineer is going to build a road from the city p to the city q. With

pressure from the government to reduce the cost, he asks you to write a program to

decide, if he should build this road or not. Your program should say yes if the building

of this road guaranteed that it can be part of the shortest road system that connects all

cities together. Otherwise, your program should say no.

► Run the Kruskal’s algorithm on the input graph. In the set s include the edges of

the graph that belong to the minimal spanning tree (MST). Next, check whether the

given edge (p, q) belongs to the MST. To do this, check whether the pair (p, q) or (q, p)

is in the set s.

Graphs, given in the samples, have the form:

1 2
4

1

32

1 2

3

YES NO

1 2

4 3

1

3

2

4

5

YES

Prim’s algorithm

Let V = {1, 2, …, n} be the set of graph vertices. Let’s construct a set U from

which a spanning tree will grow. First, set U = {1} (the MST starts to be built from the

first vertex). At each step of the algorithm, an edge of minimum cost(u, v) is found such

that u U and v V \ U, after which the vertex v is moved from the set V \ U to U.

This process continues until the set U will not be equal to V.

In the next pseudocode T denotes the set of edges included in MST.

MST_Prim(G)

T = ;

U = {1};

while U V do

begin

 find such edge (u, v) of minimum weight, that u U and v V \ U;

 T = T {(u, v)};

 U = U {v};

end;

return T;

For each not yet selected vertex v V \ U, we’ll store the minimum edge that runs

to already selected vertex u U. Then, in order to select the minimum edge at the

current step, you just need to look at these minimum edges for each vertex from V \ U,

the asymptotics is O(n).

1

2

3

4

5

6

7
10

1

2

7
2

3

4

67

2

9

Let U = {1, 2, 5} – set of vertices of current MST. The minimum edge for

 the vertex 4 is (1, 4) of length 10;

 the vertex 3 is (2, 3) of length 7;

 the vertex 6 is (5, 6) of length 2;

 the vertex 7 no such edges;

The shortest distance from current MST to vertex from V \ U is min{10, 7, 2} = 2,

this minimum is achieved for the edge (5, 6). So at the current step we add vertex 6 to

U, now U = {1, 2, 5, 6} and edge (5, 6) is added to MST.

1

2

3

4

5

6

7
10

1

2

7
2

3

4

67

2

9

The minimum edge for

 the vertex 4 is (1, 4) of length 10;

 the vertex 3 is (6, 3) of length 3;

 the vertex 7 is (6, 7) of length 4;

The shortest distance from current MST to vertex from V \ U is min{10, 3, 4} = 3,

this minimum is achieved for the edge (6, 3). So at the current step we add vertex 3 to

U, now U = {1, 2, 3, 5, 6} and edge (6, 3) is added to MST.

1

2

3

4

5

6

7
10

1

2

7
2

3

4

67

2

9

Let min_e[i] stores the weight of the smallest possible edge runing to the vertex i,

and end_e[i] contains the number of the vertex from which this smallest edge runs.

Next to each vertex v we’ll write the labels min_e[v] / end_e[v]. At the next step,

the vertex from V \ U with the smallest value min_e[v] is included to MST.

1

2

3

4

5

6

7
10

1

2

7
2

3

4

67

2

9

10 / 1

7 / 2

∞ / -1

2 / 5
1

2

3

4

5

6

7
10

1

2

7
2

3

4

67

2

9

10 / 1

3 / 6

4 / 6

1

2

3

4

5

6

7
10

1

2

7
2

3

4

67

2

9

7 / 3 4 / 6

E-OLYMP 2967. Unification day Byteland has n cities, but no one road. The

king of the country, Waldemar de Bear, decided to remedy this situation, he wants to

connect some cities with roads so that along these roads it will be possible to reach any

city from any other city. When construction will be completed, the king plans to

celebrate the Unification Day.

Unfortunately, the treasury in Byteland is almost empty, so the king needs to save

money and minimize the total length of constructed roads.

► To solve the problem, you need to find the minimum spanning tree (MST).

Implement Prim algorithm.

Example

Construct the minimum spanning tree for the graph given in the sample.

x

y

1 2 3 4 5 6 7

1

2

3

https://www.e-olymp.com/en/problems/2967

The weight of the minimum spanning tree is 4 + 4 2 ≈ 9.65.

Declare the arrays. Store the city coordinates in (x[i], y[i]).

#define MAX 5001

int x[MAX], y[MAX];

int used[MAX], min_e[MAX], end_e[MAX];

The function dist2 computes the squared distance between cities i and j.

int dist2(int i, int j)

{

 return (x[j] - x[i])*(x[j] - x[i]) + (y[j] - y[i])*(y[j] - y[i]);

}

The main part of the program. Read the coordinates of the cities.

scanf("%d",&n);

for(i = 0; i < n; i++)

 scanf("%d %d",&x[i], &y[i]);

Initialize the arrays.

memset(min_e,0x3F,sizeof(min_e));

memset(end_e,-1,sizeof(end_e));

memset(used,0,sizeof(used));

The size of MST will be calculated in the dist variable.

dist = min_e[1] = 0;

for (i = 0; i < n; i++)

{

Look for the vertex v with minimum value of min_e[v] among the vertices that are

not yet included in MST (for which used[v] = 0).

 v = -1;

 for (j = 0; j < n; j++)

 if (!used[j] && (v == -1 || min_e[j] < min_e[v])) v = j;

Include the vertex v into MST. Add an edge (v, end_e[v]) to MST.

 used[v] = 1;

 if (end_e[v] != -1) dist += sqrt((double)dist2(v,end_e[v]));

Recompute the labels for the edges outgoing from v.

 for (to = 0; to < n; to++)

 {

 int dV_TO = dist2(v,to);

 if (!used[to] && (dV_TO < min_e[to]))

 {

 min_e[to] = dV_TO;

 end_e[to] = v;

 }

 }

}

Print the value of MST.

printf("%.6lf\n",dist);

Example. Let’s simulate the Prim’s algorithm using the following example. Make

an initialization:

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

INF/-1

INF/-1

INF/-1

INF/-1INF/-1

Vertex 1 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

5/1

INF/-1

INF/-1

INF/-110/1

Vertex 2 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

5/1

7/2

2/2

INF/-18/2

Vertex 3 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

5/1

3/3

2/2

6/34/3

Vertex 4 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

5/1

3/3

2/2

4/44/3

Vertex 5 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

5/1

3/3

2/2

4/41/5

Vertex 6 is included to MST. End of the algorithm.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0/-1

5/1

3/3

2/2

4/41/5

Example. Let’s simulate the Prim’s algorithm using the following example. Let

source = 1. Near each vertex v the value of dist[v] is given. Start constructng MST from

the vertex 1. Make an initialization:

 dist[v] = ∞;

 dist[1] = 0;

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

INF

INF

INF

INFINF

Vertex 1 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

5

INF

INF

INF10

Vertex 2 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

5

7

2

INF8

Vertex 3 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

5

3

2

64

Vertex 4 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

5

3

2

44

Vertex 5 is included to MST. Recalculate the labels for the edges outgoing from it.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

5

3

2

41

Vertex 6 is included to MST. End of the algorithm.

1

2

6

3

4

5

5
7

10

8

4

1

6 4

32
0

5

3

2

41

E-OLYMP 1387. Underground cables A city wants to get rid of their unsightly

power poles by moving their power cables underground. They have a list of points that

all need to be connected, but they have some limitations. Their tunneling equipment can

only move in straight lines between points. They only have room for one underground

cable at any location except at the given points, so no two cables can cross.

Given a list of points, what is the least amount of cable necessary to make sure that

every pair of points is connected, either directly, or indirectly through other points?

► To solve the problem, you need to find the minimum spanning tree (MST).

Implement Prim algorithm.

Consider two graphs, gven in a sample.

https://www.e-olymp.com/en/problems/1387

x

y

10

10

0

x

y

10

10

0

30 14.14

E-OLYMP 9876. Jurassic Jigsaw The famous Jurassic park biologist Dean

O’Saur has discovered new samples of what he expects to be the DNA of a dinosaur.

With the help of his assistant Petra Dactil, he managed to sequence the samples, and

now they are ready for analysis. Dean thinks this dinosaur was affected with a particular

disease mutating the DNA of some cells.

To verify his theory, he needs to compute the most likely evolutionary tree from

the samples, where the nodes are the samples of DNA. Because there is no temporal

data of the DNA samples, he is not concerned where the root of the tree is.

Dean considers the most likely evolutionary tree, the tree with smallest

unlikeliness: the unlikeliness of a tree is defined as the sum of the weights of all edges,

where the weight of an edge is the number of positions at which the two DNA strings

are different.

As a world expert in data trees, he asks you to reconstruct the most likely

evolutionary tree.

In the first sample, the optimal tree is AA – AT – TT – TC. The unlikeliness of the

edge between AA and AT edge is 1, because the strings AA and AT differ in exactly 1

position. The weights of the other two edges are also 1, so that the unlikeliness of the

entire tree is 3. Since there is no tree of unlikeliness less than 3, the minimal

unlikeliness of an evolutionary tree for this case is 3.

► To solve the problem, you need to find the minimum spanning tree (MST).

Implement Prim algorithm.

https://www.e-olymp.com/en/problems/9876

