

Strongly connected components

Definition. A directed graph is called strongly connected if for every pair of

vertices u and v vertices u and v are reachable from each other.

An arbitrary directed graph can be divided into strongly connected components,

that are defined as the equivalence classes “u is reachable from v and v is reachable

from u”.

0 1

2

34

Theorem. A directed graph is strongly connected (consists of only one strongly

connected component) if and only if for any vertex v the following two conditions are

satisfied:

 all other vertices of the graph are reachable from the vertex v;

 vertex v is reachable from any vertex of the graph;

Moreover, if for any one vertex v these two conditions are satisfied, graph is

strongly connected.

Definition. A strongly connected component of directed graph G(V, E) is such a

maximum set of vertices C V, that for every pair of vertices u and v vertices u and v

are reachable from each other.

Definition. The transposed graph G(V, E) is a graph GT(V, ET), where ET = {(u, v)

: (v, u) E}. That is, ET consists of the edges of G with their directions revrsed.

Graphs G and GT have the same strongly connected components, since u and v are

reachable from each other in G if and only if they are reachable from each other in GT.

The following Kosaraju algorithm finds strongly connected components in

directed graph G (V, E) in linear time O (V + E).

Strongly Connected Components(G)

1. Call DFS(G) to compute finishing times f[v] for each vertex v V.

2. Compute GT.

3. Call DFS(GT), but in the main loop of DFS consider the vertices in order of

decreasing f[v].

4. Output the vertices of each tree in the depth first forest formed in line 3 as a

separate strongly connected component.

Based on this algorithm, a component graph GSCC(VSCC, ESCC) is determined as

follows. Suppose that G has strongly connected components C1, C2, …, Ck. The vertex

set VSCC = {v1, v2, …, vk} consists of vertices vi for each strongly connected component

Ci of G.

Example. Consider the next graph.

1. Call DFS(G), near each vertex v place the labels d[v] / f[v]:

68 1 5

37 2 4

13/14 11/16 1/10 8/9

12/15 3/4 2/7 5/6

2. Compute GT:

68 1 5

37 2 4

13/14 11/16 1/10 8/9

12/15 3/4 2/7 5/6

3. Call DFS(GT), considering the vertices in decreasing order of f[v].

68 1 5

37 2 4

13/14 11/16 1/10 8/9

12/15 3/4 2/7 5/6

We get a graph of components (condensation graph):

6,7,8 1,5

3,2

4

4. The strongly connected components are: {6, 7, 8}, {3, 2}, {1, 5} and {4}.

Lemma. Let C1 and C2 be distinct strongly connected components in directed

graph G(V, E). Let u1, v1 C1, u2, v2 C2, and suppose that there is a path u1 u2 in

G. Then there cannot also be a path v2 v1.

u1

v1

u2

v2

C1

C2

Proof. If we assume the opposite, then the vertices u1 and u2 will be reachable

from one another (u2 v2 v1 u1). That is, these vertices must belong to one

strongly connected component.

E-OLYMP 2403. Strong connectivity A strongly connected component in a

directed graph is an arbitrary set of vertices such that from any vertex of this set there is

a path to any other vertex of this set, and there is no other set with a similar property

containing this set.

Given a directed graph. Find the number of strongly connected components in it.

► Find the number of strongly connected components in a directed graph. Graphs,

given in samples, have the form:

1 2 3

1 2

35

4

Each of these graphs has 3 strongly connected components.

The input graph is stored in the adjacency list g. The inverse graph is stored in the

adjacency list gr.

vector<vector<int> > g, gr;

vector<int> used, top;

https://www.e-olymp.com/en/problems/2403

Funtion dfs1 implements the depth first search on the input graph. Put into the

array top the sequence of vertices in the order in which the depth first search finishes

their processing.

void dfs1(int v)

{

 used[v] = 1;

 for(int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (!used[to]) dfs1(to);

 }

 top.push_back(v);

}

Funtion dfs2 implements the depth first search on the reversed graph. All the

vertices that will be traversed as a result of a recursive call of dfs2 function, belong to

one strong connected component.

void dfs2(int v)

{

 used[v] = 1;

 for(int i = 0; i < gr[v].size(); i++)

 {

 int to = gr[v][i];

 if (!used[to]) dfs2(to);

 }

}

The main part of the program. Read the input data. Construct the reversed graph.

scanf("%d %d",&n,&m);

g.assign(n+1,vector<int>());

gr.assign(n+1,vector<int>());

for(i = 1; i <= m; i++)

{

 scanf("%d %d",&a,&b);

 g[a].push_back(b);

 gr[b].push_back(a);

}

Run the depth first search on the input graph. The sequence in which the

processing of graph vertices is completed is stored in the top array.

used.assign(n+1,0);

for(i = 1; i <= n; i++)

 if (!used[i]) dfs1(i);

Run the depth first search on the reversed graph. Iterate the vertices of the

reversed graph in the order of traversing the array top from right to left (from the end to

the beginning). In the variable c count the number of strongly connected components.

used.assign(n+1,0);

c = 0;

for(i = n - 1; i >= 0; i--)

{

 v = top[i];

 if (!used[v])

 {

 dfs2(v);

 c++;

 }

}

Print the number of strongly connected components in the graph.

printf("%d\n",c);

E-OLYMP 1947. Condensation of the graph Find the number of edges in the

condensation of a given directed graph.

The condensation of a directed graph G is a directed graph G*, whose vertices are

strongly connected components of G, and the edge in G* is present only if there exists

at least one edge between the vertices of corresponding connected components.

The graph condensation does not contain multiple edges.

► Find the strongly connected components in the graph. Color all vertices of each

strong connected component with one unique color. Let color[i] be the color of the i-th

vertex. The number of used colors equals to the number of strong connected

components.

Iterate over all the edges of the original graph. If the edge connects vertices of

different colors, then it belongs to the graph condensation. Put all the edges (a, b) for

which color[a] ≠ color[b] into the set s. Since we are using a set, not a multiset,

multiple edges will not be taken into account. The number of elements in the set s will

be equal to the number of edges in the graph condensation.

The graph shown in the example has the form:

21

34

Graph condensation contains three vertices and two edges.

Store the input graph in the adjacency list g. Store the inverse graph (the graph

with reversed edges) in the adjacency list gr. The edges of the condensed graph will be

stored in the set of pairs s.

vector<vector<int> > g, gr;

vector<int> used, top, color;

set<pair<int,int> > s;

https://www.e-olymp.com/en/problems/1947

Funtion dfs1 implements the depth first search on the input graph. Put into the

array top the sequence of vertices in the order in which the depth first search finishes

their processing.

void dfs1(int v)

{

 used[v] = 1;

 for(int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (!used[to]) dfs1(to);

 }

 top.push_back(v);

}

Funtion dfs2 implements the depth first search on the reversed graph. All the

vertices that will be traversed as a result of a recursive call of the dfs2 function, belong

to one strong connected component. Color all visited vertices with color c.

void dfs2(int v, int c)

{

 color[v] = c;

 for(int i = 0; i < gr[v].size(); i++)

 {

 int to = gr[v][i];

 if (color[to] == -1) dfs2(to,c);

 }

}

The main part of the program. Read the input data. Construct the reversed graph.

scanf("%d %d",&n,&m);

g.resize(n+1);

gr.resize(n+1);

for(i = 0; i < m; i++)

{

 scanf("%d %d",&a,&b);

 g[a].push_back(b);

 gr[b].push_back(a);

}

Run the depth first search on the input graph. The sequence in which the

processing of graph vertices is completed is stored in the top array.

used.resize(n+1);

for(i = 1; i <= n; i++)

 if (!used[i]) dfs1(i);

Run the depth first search on the reversed graph. Iterate the vertices of the

reversed graph in the order of traversing the array top from right to left (from the end to

the beginning). The vertices included in the same strong connected component are

colored with the same color. The current paint color is in the variable c.

color.assign(n+1,-1);

c = 0;

for(i = 1; i <= n; i++)

{

 v = top[n-i];

 if (color[v] == -1) dfs2(v,c++);

}

Variable c contains the number of connected components.

for(i = 1; i < g.size(); i++)

for(j = 0; j < g[i].size(); j++)

{

 to = g[i][j];

Iterate over all the edges of the graph (i, to). Check if the vertices i and to lie in

different strongly connected components. If this is true, they are painted with different

colors. Then the edge (i, to) belongs to the condensation of the graph, so insert into set

s the pair (color[i], color[to]). Due to the fact that we use a set, not a multiset, multiple

pairs will not be taken into account.

 if (color[i] != color[to])

 s.insert(make_pair(color[i],color[to]));

}

Print the number of edges in the graph condensation.

printf("%d\n",s.size());

E-OLYMP 1104. Dominoes Dominos are lots of fun. Children like to stand the

tiles on their side in long lines. When one domino falls, it knocks down the next one,

which knocks down the one after that, all the way down the line. However, sometimes a

domino fails to knock the next one down. In that case, we have to knock it down by

hand to get the dominos falling again.

Your task is to determine, given the layout of some domino tiles, the minimum

number of dominos that must be knocked down by hand in order for all of the dominos

to fall.

► Find the strongly connected components of the graph. Color all vertices of each

strong connected component with one unique color. Let color[i] be the color of the i-th

vertex. The number of used colors is the number of strongly connected components.

Obviously, if you push one domino tile with your hand, then all dominoes from

the same connected component will necessarily fall. Let cnt be the number of

connected components.

Create an array used of length cnt, which i-th element is 1, if it is necessary to

push dominoes from the i-th component. Now find out which of the values used[i]

should be set equal to 0. Iterate over all the edges of the graph. We are interested in

those edges that connect different connected components. If, for example, the edge i

j is such (for it color[i] ≠ color[j]), then it is necessary to set used[color[j]] = 0. In this

case, there is no need to knock dominoes from the component of color color[j]. Since

by colliding dominoes from the component of color color[i], we’ll surely knock all

dominoes from the component of color color[j].

https://www.e-olymp.com/en/problems/1104

Graphs, given in samples, have the form:

1 2 3

1 2 3

4 5

In the first sample, it is enough to push domino number 1. In the second example,

it is necessary to push dominoes numbered 1 and 5.

1 2 3

used[1] = 1 used[2] = 0 used[3] = 0

Graph from the first sample has 3 strongly connected components.

 because of an edge (1, 2) we do not need to knock vertex 2;

 because of an edge (2, 3) we do not need to knock vertex 3;

Store the input graph in the adjacency list g. The reverse graph (in which all edge

directions are reversed) store in the adjacency list gr.

vector<vector<int> > g, gr;

vector<int> used, top, color;

The function dfs1 implements depth first search on the input graph. In the array

top store the vertices in the order in which the depth first search ends their processing.

void dfs1(int v)

{

 used[v] = 1;

 for(int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (!used[to]) dfs1(to);

 }

 top.push_back(v);

}

The function dfs2 implements depth first search on the reversed graph. All vertices

that will be traversed as a result of a recursive call of dfs2 function belong to one

strongly connected component. Color all the visited vertices with color c.

void dfs2(int v, int c)

{

 color[v] = c;

 for(int i = 0; i < gr[v].size(); i++)

 {

 int to = gr[v][i];

 if (color[to] == -1) dfs2(to,c);

 }

}

The main part of the program. Read the input data. Build the reversed graph.

scanf("%d %d",&n,&m);

g.resize(n+1);

gr.resize(n+1);

cnt = 0;

for(i = 0; i < m; i++)

{

 scanf("%d %d",&a,&b);

 g[a].push_back(b);

 gr[b].push_back(a);

}

Start the depth first search on the input graph. The sequence in which the graph

vertices processing is completed is stored in the array top.

used.resize(n+1);

for(i = 1; i <= n; i++)

 if (!used[i]) dfs1(i);

Start the depth first search on the reversed graph. Iterate the vertices of the

reversed graph in the order of traversing the array top from right to left (from end to

start). The vertices included in one strongly connected component are colored with the

same color. The current color is in the variable c.

color.assign(n+1,-1);

c = 0;

for(i = 1; i <= n; i++)

{

 v = top[n-i];

 if (color[v] == -1) dfs2(v,c++);

}

The variable c contains the number of strongly connected components.

used.assign(c,1);

for(i = 1; i < g.size(); i++)

for(j = 0; j < g[i].size(); j++)

{

 to = g[i][j];

Iterate over the edges of graph (i, to). Check if the vertices i and to lie in different

strongly connected components. This is the case if they are colored in different colors.

In this case, if we knock any domino from the strongly connected component, where

domino (vertex) i is located, then the domino to will surely fall. This means that there is

no sence to knock dominoes of color color[to], so set used[color[to]] = 0.

 if (color[i] != color[to]) used[color[to]] = 0;

}

In the variable c count the number of dominoes to be pushed. Equality used[i] = 1

means that no domino of color i will fall, no matter which domino of a different color is

knocked. In this case, we’ll definitely have to knock at least one domino of color i.

c = 0;

for(i = 0; i < used.size(); i++)

 if (used[i]) c++;

Print the answer.

printf("%d\n",c);

E-OLYMP 8553. Computer network A computer network comprises n

computers, numbered from 0 to n – 1. Each one, after receiving a message, passes it to

some other computers. If a message from computer x can reach a computer y, this does

not necessarily mean that a message from computer y reaches the computer x. The

system administrators want to determine the minimum number of computers from

which a message has to be sent in order to reach all the computers in the network.

For better transmission of messages, they believe that the network needs to be

extended by adding new connections between some computers, so when sending a

message from an arbitrary computer it will be distributed to all others. For this purpose,

it is necessary to determine the minimum number of new connections to be added, so

that each of the computers can be used as initial for distribution of messages.

Write a program cnet that finds the minimal number of computers from which a

message needs to be sent in order to be distributed to all computers in the network and

finds the minimum number of new connections that need to be added, in order to allow

a message, sent from each of the computers, to reach every other computer in the

network.

► Find the strongly connected components in the graph. If there is one component

(the graph is strongly connected), then a message for the entire network can be sent

from any one computer, and the number of additional connections required is 0.

Let the graph be not strongly connected. Consider its condensation. For each

connected component, find out whether there are outgoing and incoming edges. If some

component does not have incoming edges, then in order to send a message to entire

network, the message must be sent from a vertex belonging to this component. For the

condensation below, the message should be sent from 3 computers.

send

send

send

The message can be passed from any computer to any other in the network only if

the graph is strongly connected. The minimum number of edges should be added to the

original graph in such way as to make it strongly connected. For each connected

component there must be both an incoming and outgoing edge. Let:

с1 is the number of components without incoming edges (on the picture с1 = 3);

с2 is the number of components without outgoing edges (on the picture с2 = 2);

https://www.e-olymp.com/en/problems/8553

Then its always possible to add max(с1, с2) edges to make the graph strongly

connected. For our example max(с1, с2) = max(3, 2) = 3. To get a strongly connected

graph, it is enough to add 3 edges.

In the first test case the graph contains three strongly connected components.

0 1

2

34

There is one component that has no incoming edges: {0, 1, 4}, с1 = 1;

There are two components that has no outgoing edges: {2}, {3}, с2 = 1;

The message that should be distributed throughout the network, must be sent from

components that have no incoming edges. We have one such component. The mailing

can be done from one vertex (0, 1 or 4).

In order for the whole graph to become strongly connected, it is necessary to

create edges outgoing from vertices 2 and 3, and at least one of the edges must be

incoming into the component consisting of vertices {0, 1, 4}. For example, creating the

following edges will make the graph strongly connected:

0 1

2

34

E-OLYMP 1936. Flights The Chief Engineer Peter was asked to develop a new

model of aircraft for the company “Air Bubundiya”. It was found that the hardest part is

choosing the optimal size of the fuel tank.

The Chief Cartographer of “Air Bubundiya” John has made a detailed map of

Bubundiya. On this map he marked the fuel consumption for the flight between each

pair of cities.

https://www.e-olymp.com/en/problems/1936

Peter wants to make the size of fuel tank as small as possible, so that the aircraft

can fly from any city to any other (possibly with refueling in cities on the way).

► Let the tank size be x. Construct a graph in which there is a directed edge (i, j)

if and only if the amount of fuel required for a direct flight from the i-th city to the j-th

city is no more than x (that is, with the available tank, you can make a direct flight).

You can fly from any city to any one only if the graph is strongly connected.

Instead of calculating the number of strongly connected components, we will use the

following property.

Graph is strongly connected if the following statements hold for any vertex v:

 from the vertex v there is a path to all the other vertices;

 from any vertex there is a path to v;

Moreover, if these statements are true for at least one vertex v, then they are true

for all other vertices. These properties can be checked by running a depth first search

on a graph, for example, from a zero vertex (for definiteness, the vertices are numbered

from 0 to n – 1).

Thus, for a tank of size x, we have learned to determine whether an airplane can

get from any city to any other. It remains to find the required minimum possible volume

of the aircraft tank using the binary search method.

Graph, given in a sample, has the form:

1 2

4 3

10

11

10

12
1613

17

22

13 8

9

10

On the left side, presented a graph of possible flights with a tank volume of 9, and

on the right with a volume of 10.

1 2

4 3

tank = 9

1 2

4 3

tank = 10

With a tank of size 10, an airplane can fly from any city to any other.

Store the matrix of fuel consumption between cities in the array graph. The array

used is used to mark the already visited vertices.

#define MAX 1010

int graph[MAX][MAX], g[MAX][MAX];

int used[MAX];

Start the function dfs of depth first search from the vertex v. If type = 0, then go

along the edges according to their direction. When type = 1, depth first search is

performed along the edges in the opposite direction.

void dfs(int v, int type)

{

 used[v] = 1;

 for(int i = 0; i < n; i++)

 if ((type ? g[i][v] : g[v][i]) && !used[i]) dfs(i,type);

}

The function AllVisited checks if all the edges of the graph are visited during the

depth first search. The answer will be positive and the function will return 1 if all cells

of the array used contain one.

int AllVisited(void)

{

 for(int i = 0; i < n; i++)

 if (!used[i]) return 0;

 return 1;

}

The main part of the program. Read the input fuel consumption matrix into the

array graph.

scanf("%d",&n);

for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

 scanf("%d",&graph[i][j]);

Find the minimum tank size using binary search on a segment [L; R]. Initially set

[L; R] = [0; 2000000000].

L = 0; R = 2000000000;

while(L < R)

{

 Mid = (L + R) / 2;

At each iteration of the binary search, construct the adjacency matrix g of the

directed graph: g[i][j] = 1, if a direct flight with tank volume Mid can be made from

city i to city j.

 for(i = 0; i < n; i++)

 for(j = 0; j < n; j++)

 g[i][j] = (graph[i][j] <= Mid);

Start depth first search from the zero vertex. If all the other vertices can be reached

from zero vertex, and zero vertex can be reached from all the other vertices, then graph

is strongly connected. In this case, the value of the variable flag remains 0.

 memset(used,0,sizeof(used));

 dfs(0,0); flag = 0;

 if (AllVisited())

 {

 memset(used,0,sizeof(used));

 dfs(0,1);

 if (!AllVisited()) flag = 1;

 } else flag = 1;

Recompute the boundaries of the binary search interval depending on the value of

flag.

 if (!flag) R = Mid; else L = Mid + 1;

}

Print the required minimum tank size L.

printf("%d\n",L);

E-OLYMP 1910. Empire The Empire consists of n planets. Lets label these

planets with numbers from 1 to n. The planet with the number 1 is a capital of Empire,

where the Emperor residence is located and the troops are prepared. On different

planets of the empire the uprisings are often, which must be suppressed by force and

immediately.

In order for troops to move quickly, the one-way teleports are installed on some

planets. There are m teleports in total. Using the i-th teleport you can get instantly from

planet ai to planet bi (but not vice versa). Thus, it is possible to crush the rebellion in

time on some planet x, if there is a sequence of planets p1, ..., pk (k ≥ 2) such that p1 =

1, pk = x, and for each 1 ≤ i < k there is a teleport from planet with number pi to the

planet with number pi+1. After crushing the uprising, the troops remain on the planet to

maintain the order, so we do not need to worry about their return to the capital.

Check is there an opportunity using the existing system of teleports to crush the

rebellion on any planet of the Empire. If so, print 0. Otherwise find the minimum

number of teleports that must be built more so that the rebellion on any planet can be

suppressed instantly. Each new teleport can be constructed between any two planets.

► In the graph representing the empire, add the least number of edges so that any

vertex is reachable from vertex 1 (the capital).

Note that new edges can only be constructed from the first vertex. Indeed, if the

new arc is (a, b), then replacing it with (1, b), we will not change the reachability of the

vertices from the capital.

Consider a graph condensation and choose a vertex that does not have incoming

edges (the condensation graph is acyclic, such vertices always exist). Some strongly

connected component corresponds to this vertex. From vertex 1 it is necessary to

construct an edge to one of the vertices of this strongly connected component. There is

one exception here – if vertex 1 itself is included in this strongly connected component,

then no edge need to be constructed.

If in the condensation graph there are edges incoming to the vertex v, then there is

no need to construct new edges in the original graph from vertex 1 to the vertices of the

strongly connected component corresponding to v.

https://www.e-olymp.com/en/problems/1910

Thus, in this problem it is necessary to find the number of strongly connected

components into which there is no incoming edges in condensation graph. The

component that contains the capital should be processed separately.

Graph given in a sample, has the form:

3

2

1

4

5

6

To solve the problem, it is enough to build two additional teleports. You can, for

example, build a teleport from planet 2 to planet 4 and from planet 5 to planet 3.

The given graph has 6 strongly connected components: each vertex forms one.

Find the components without incoming edges. There will be two of them: those that

contain vertices 3 and 4.

3

2

1

4

5

6

Thus, it is enough to build two new teleports from the capital (vertex 1), running

respectively to vertices 3 and 4.

E-OLYMP 1937. Fire safety There are n houses in the city of Zelenograd. Some

of them are connected by one way roads.

In recent times in Zelenograd the incidents of fires have increased. In this regard,

the residents decided to build several fire stations in the city. But there was a problem –

the fire engine traveling on the call, of course, can ignore the direction of the current

road, however, the car returning from the job is obliged to follow the traffic rules (the

people of Zelenograd piously respect these rules!).

It is clear that wherever the fire truck will be, it should be possible to return to the

fire station where from it started its way. But the construction of stations costs a lot of

money, so at the city council it was decided to build a minimum number of stations in

such a way that this condition was hold. In addition for saving money, it was decided to

build stations in the form of extensions to existing houses.

Your task is to write a program that calculates the optimal position of the stations.

► In this problem you need to find the minimum set of vertices reachable from all

other vertices in the graph. Find the condensation of the graph. Consider a strongly

connected component without any outgoing edge. Having arrived from other

https://www.e-olymp.com/en/problems/1937

components, you can put out the fire, but you will no longer be able to get home by

following the road rules. Therefore, if there are no outgoing edges from some

connected component, then it is necessary to build a fire station in it. There is no need

to build other stations, since from any vertex it is always possible to get along the edges

of the graph into a component without outgoing edges.

The input graph contains three strongly connected components. No edge comes

out from components consisting of one vertex (4 and 5). Therefore, it is enough to build

fire stations in them.

1 2

4 3

5

