2560. Freckles
In an episode of the Dick Van
Dyke show, little Richie connects the freckles on his Dad's back to form a
picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar,
so his Ripley's engagement falls through.
Consider Dick's back to be a
plane with freckles at various (x, y) locations. Your job is to tell
Richie how to connect the dots so as to minimize the amount of ink used. Richie
connects the dots by drawing straight lines between pairs, possibly lifting the
pen between lines. When Richie is done there must be a sequence of connected
lines from any freckle to any other freckle.
Input. The first line contains 0 < n ≤ 100, the number of freckles on
Dick's back. For each freckle, a line follows; each following line contains two
real numbers indicating the (x, y) coordinates of the freckle.
Output. Your program prints a single real number to two decimal places: the
minimum total length of ink lines that can connect all the freckles.
.
3
1.0 1.0
2.0 2.0
2.0 4.0
Sample Output
3.41
графы – минимальный остов
Помкольку количество веснушек не
велико, задачу можно решить как алгоритмом Крускала, так и Прима.
Евклидово минимальное остовное
дерево, как правило, следует находить при помощи алгоритма Прима.
Реализация
алгоритма – Крускал
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
#define MAX 110
using namespace
std;
int mas[MAX];
double x[MAX], y[MAX], MST;
vector<vector<double> > e;
vector<vector<double> >::iterator iter;
vector<double> temp(3,0);
int Repr(int
n)
{
while (n !=
mas[n]) n = mas[n];
return
n;
}
int Union(int
x,int y)
{
int x1 =
Repr(x),y1 = Repr(y);
mas[x1] = y1;
return (x1 !=
y1);
}
int lt(vector<double> a, vector<double>
b)
{
return (a[2]
< b[2]);
}
double RunMST(void)
{
double res =
0.0;
for(iter =
e.begin(); iter != e.end(); iter++)
if
(Union((*iter)[0],(*iter)[1]))
res += (*iter)[2];
return res;
}
int main(void)
{
int i, j, n,
m, tests;
scanf("%d",&n);
for(i = 1; i
<= n; i++)
scanf("%lf
%lf",&x[i],&y[i]);
for(i = 1; i
<= n; i++) mas[i] = i;
for(i = 1; i
<= n; i++)
for(j = i +
1; j <= n; j++)
{
temp[0] = i; temp[1] = j;
temp[2] = sqrt((x[j] - x[i])*(x[j] - x[i])
+
(y[j] - y[i])*(y[j] - y[i]));
e.push_back(temp);
}
sort(e.begin(),e.end(),lt);
MST = RunMST();
printf("%.2lf\n",MST);
return 0;
}
Реализация
алгоритма – Прим
#include <stdio.h>
#include <math.h>
#include <string.h>
#define MAX 110
double x[MAX], y[MAX];
int i, j, v, to, n;
int used[MAX], end_e[MAX];
double dist, min_e[MAX];
double dist2(int
i, int j)
{
return (x[j]
- x[i])*(x[j] - x[i]) + (y[j] - y[i])*(y[j] - y[i]);
}
int main(void)
{
scanf("%d",&n);
for(i = 0; i
< n; i++)
{
scanf("%lf
%lf",&x[i], &y[i]);
min_e[i] = 1e9;
}
memset(end_e,-1,sizeof(end_e));
memset(used,0,sizeof(used));
dist = min_e[0] = 0;
for (i = 0; i
< n; i++)
{
v = -1;
for (j = 0;
j < n; j++)
if
(!used[j] && (v == -1 || min_e[j] < min_e[v])) v = j;
used[v] = 1;
if
(end_e[v] != -1) dist += sqrt(dist2(v,end_e[v]));
for (to =
0; to < n; to++)
{
int dV_TO
= dist2(v,to);
if
(!used[to] && (dV_TO < min_e[to]))
{
min_e[to] = dV_TO;
end_e[to] = v;
}
}
}
printf("%.2lf\n",dist);
return 0;
}