3264. Balanced Lineup

 

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

 

Input. Line 1: Two space-separated integers, N and Q.

Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i

Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

 

Output. Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

 

Sample Input

6 3

1

7

3

4

2

5

1 5

4 6

2 2

 

Sample Output

6

3

0

 

 

РЕШЕНИЕ

структуры данных – RMQ

 

Анализ алгоритма

В задаче необходимо реализовать Range Minimum / Maximum Query. Каждый запрос – это разница между максимумом и минимумом на отрезке.

 

Реализация алгоритма

 

#include <stdio.h>

#define MAX 50010

#define LOGMAX 16

 

int dp_max[MAX][LOGMAX], dp_min[MAX][LOGMAX];

int a[MAX];

int i, n, q, u, v;

 

int max(int i, int j)

{

  return (i > j) ? i : j;

}

 

int min(int i, int j)

{

  return (i < j) ? i : j;

}

 

void Build_RMQ_Array(int *b)

{

  int i, j;

  for (i = 1; i <= n; i++) dp_max[i][0] = dp_min[i][0] = b[i];

  for (j = 1; 1 << j <= n; j++)

    for (i = 1; i + (1 << j) - 1 <= n; i++)

    {

      dp_max[i][j] =

        max(dp_max[i][j - 1], dp_max[i + (1 << (j - 1))][j - 1]);

      dp_min[i][j] =

        min(dp_min[i][j - 1], dp_min[i + (1 << (j - 1))][j - 1]);

    }

}

 

int RangeMaxQuery(int i, int j)

{

  int temp, k = 0;

  if (i > j) temp = i, i = j, j = temp;

  while ((1 << (k + 1)) <= j - i + 1) k++;

  int _max = max(dp_max[i][k],dp_max[j - (1<<k) + 1][k]);

  int _min = min(dp_min[i][k],dp_min[j - (1<<k) + 1][k]);

  return _max - _min;

}

 

int main(void)

{

  scanf("%d %d",&n,&q);

  for(i = 1; i <= n; i++) scanf("%d",&a[i]);

 

  Build_RMQ_Array(a);

 

  for(i = 0; i < q; i++)

  {

    scanf("%d %d",&u,&v);

    printf("%d\n",RangeMaxQuery(u,v));

  }

  return 0;

}