1051. Closest
Common Ancestors
Write a program that takes as
input a rooted tree and a list of pairs of vertices. For each pair (u,
v) the program determines the closest common ancestor of u and v in the
tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own
ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
Input. The data set starts with the
tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors)
successor1 successor2 ... successorn
......
where
vertices are represented as integers from 1 to n. The tree description is followed by a list of pairs of vertices,
in the form:
nr_of_pairs
(u v)
(x y) ...
The
input contents several data sets (at least one).
Note
that white-spaces (tabs, spaces and line breaks) can be used freely in the
input.
Output. For each common ancestor the program prints the
ancestor and the number of pair for which it is an ancestor. The results are
printed on the standard output on separate lines, in to the ascending order of
the vertices, in the format: ancestor:times
For
example, for the following tree:
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1,5) (1,4) (4,2)
(2,3)
(1,3) (4,3)
2:1
5:5
LCA
Для
каждого запроса (x y) следует найти LCA(x y)
в дереве. Далее следует подсчитать сколько раз каждая вершина будет ответом.
Входные
данные содержат несколько тестов. Пробелы, табуляции и переводы строки могут
встречаться в любом месте.
#include <cstdio>
#include <vector>
#include <cstring>
#define MAX 1000
#define LOGMAX 10
using namespace std;
int i, n, q, root, l, x, y, c, lca;
vector<int> g[MAX];
int timer, d[MAX], used[MAX], f[MAX];
int up[MAX][LOGMAX];
char temp[100], ch;
void dfs (int v, int p)
{
int i, to;
d[v] = timer++;
up[v][0] = p;
for(i = 1; i <= l; i++)
up[v][i] =
up[up[v][i-1]][i-1];
for(i = 0; i < g[v].size(); i++)
{
to = g[v][i];
if (to != p) dfs (to, v);
}
f[v] = timer++;
}
// if a is a parent of b
int Parent(int a, int b)
{
return (d[a] <= d[b]) && (f[a] >=
f[b]);
}
int LCA (int a, int b)
{
if (Parent(a, b)) return
a;
if (Parent(b, a)) return
b;
for (int i = l; i
>= 0; i--)
if (!Parent(up[a][i], b)) a = up[a][i];
return up[a][0];
}
int main(void)
{
while(scanf("%d",&n)
== 1)
{
l = 1;
while ((1 << l) <= n) l++;
memset(used,0,sizeof(used));
for(i = 1; i <= n; i++)
g[i].clear();
memset(d,0,sizeof(d));
memset(f,0,sizeof(f));
memset(up,0,sizeof(up));
for(i = 1; i <= n; i++)
{
scanf("%d%[^0-9]",&x, temp);
scanf("%d%[^0-9]",&c, temp);
while(c--)
{
scanf("%d",&y);
g[x].push_back(y);
used[y] = 1;
}
}
for(i = 1; i <= n; i++)
if (!used[i]) root = i;
dfs(root,root);
memset(used,0,sizeof(used));
scanf("%d%[^0-9]",&q,temp);
for(i = 0; i < q; i++)
{
scanf("%d%[^0-9]%d%[^0-9]",&x,temp,&y,temp);
lca = LCA(x, y);
used[lca]++;
}
for(i = 1; i <= n; i++)
if (used[i]) printf("%d:%d\n",i,used[i]);
}
return 0;
}