ACM ICPC 2001, South Central USA, http://acm.tju.edu.cn/toj/

--

2043. Does This Make Me Look Fat?

Introduction

As the host of a popular daytime television talk show, you are working through the details of an upcoming episode on dieting. Your guest is the controversial Dr. Kevorkian, who has recently invented his own weight-loss plan, "Do You Want To Diet?" that guarantees to reduce your body weight by 1 pound every day.

You have a number of dieters scheduled to be on the show who have all been using Dr. Kevorkian's new plan. You want to make the episode more dramatic by introducing your guests in decreasing order of their weights on the day of the show. The problem is that the forms you had them fill out only requested the following information: Name, Days on the diet, Weight at start of diet. Hopefully you can dredge up those long-forgotten math skills before the filming time tonight!

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components:

1. Start line - A single line, "START"

2. Dieter list - A series of 1 to 10 (inclusive) single lines consisting of three fields, with each field separated from the others by a single space:

· Name - The dieter's first name. This will be a text string containing 1 to 20 (inclusive) alphanumeric characters (no spaces).

· Days On Diet - The number of days the dieter has been on the "Do You Want To Diet" as of the day of the talk show. This will be a non-zero positive integer strictly less than 1000.

· Starting Weight - The weight, in pounds, of the dieter just before starting the diet. This will be a non-zero positive integer strictly less than 10,000.

3. End line - A single line, "END"

Here are some facts that may be useful:

· All dieters lost exactly 1 pound every day they were on the diet, as advertised.

· Nobody stayed on the diet long enough to weigh less than 1 pound at the time of the show.

· All dieters in a given input set will have different weights on the day of the show.

· All dieters in a given input set will have different names.

Output

For each input data set, there will be exactly one output set, and there will be exactly one blank line separating output sets.

A single output set consists of a series of lines, each containing the Name of one of the dieters from the Dieter list. The list will be sorted in descending order according to weight at the time of the TV show. All dieters must be listed.

Sample Input

START

Joe 10 110

END

START

James 100 150

Laura 100 140

Hershey 100 130

END

START

Hershey0 1 5

Hershey2 1 3

Hershey1 1 4

Hershey3 1 2

END

Sample Output

Joe

James

Laura

Hershey

Hershey0

Hershey1

Hershey2

Hershey3

2044. Manifest Destiny

Introduction

A group of colonists has landed on an uncharted island, looking for that special place to stop and settle. Unfortunately, there are already natives on the island, and now it's a race to see who will be able to survive. In order to settle, a group must find food. The settlers have not learned the arts of agriculture yet, so they will invariably eat all the food and have to move on. If any groups encounter each other, they will fight to the death, since resources are scarce. Your job is to determine who will be alive or dead at the end of N turns and where they are on the island.

The island is a rectangular A x B matrix. Each square is either water, fields, or mountains. Settlers or native groups can only be located on fields (they can neither swim nor climb). Wheat grows in certain locations on the fields and is the only source of food for the groups.

Each group is assigned an identifier and has a certain number of people in it. During each year (or turn), the surviving groups (those with one or more people alive) will perform an action. The group with the lowest identifier goes first, followed by the next lowest, until all groups have had their "turn." A group can only do one of the actions listed below. To determine which action a group does, they try to do the first action. If unable to do that action, the group will try the second action, and so forth until it finds an action that it can perform. Note that a group will always be able to do one of the following actions each turn:

1. If a group is adjacent to another group, they will attack (in the case of multiple adjacent tribes, the tribe will attack the first tribe it finds in a clockwise search starting at the northern square).

2. If a group is adjacent to wheat, then the group will eat it and not move (if multiple wheat terrain squares are adjacent to the group, the wheat eaten will be the first encountered using a clockwise search starting from the terrain square to the north of the group). The wheat eaten will be reduced by the number of people in the group. If there are more people in the group than wheat, the next group of wheat in the clockwise search pattern will be eaten until either there is no more wheat in an adjacent terrain square or the total number of wheat units consumed equals the size of the group. Once wheat is completely consumed, the square that the wheat was in should be considered as a normal field.

3. If a group was not adjacent to any wheat at the beginning of their turn, the group will search for food by moving one square to the North, East, South, or West (see below for moving requirements). If the group is unable to move, it will stay in its current location.

At the end of each group's turn, the number of people in the group and anything they might have encountered is recalculated based on:

1. If the group ate this turn, the group will grow by 33% (rounded up) of the people that were able to eat. 5% (rounded up) of the people that did not eat will die due to starvation.

2. If the group attacked another tribe, the group will kill an amount of people equal to its 'strength.' A group's strength is equal to 50% (rounded up) of its population. Because they are not eating while fighting, 10% (rounded up) of the group will die after the fighting is finished. Note that only the group attacking does damage; the other group will have to wait until its turn to retaliate, if it is able to.

3. If a group moved to another square, 10% (rounded up) of the people in the group will die due to starvation and the rigors of travel.

NOTE: When rounding, round the amount that will be added or subtracted from the group. Only use the cardinal points (N,S,E,W) when determining if a group is adjacent to something.

Movement: Whether a group is comprised of settlers or natives, moving on the island is highly ritualized. Each group follows a set of rules to determine which direction to move in order to find the perfect place to stop and make a (brief) home:

1. Each group remembers where it has been and determines which direction to go based on a point system. Points will be recalculated each turn as follows:

· Assign each area adjacent to the group (considering cardinal directions only) a number of points equal to the number of times the group has entered that square. Note that if a group moves to and stays in a single square for multiple turns, it has only entered the square once. Starting the simulation in a particular terrain square also counts as entering that square once.

· Groups loath to turn around and go back the way they came, thus the last visited area shall be worth double the points calculated from above.

2. The group will move in the direction with the lowest points. In case of a tie, the group will give priority to the tied direction appearing first in this list: North, East, South, West.

· Since water and mountains are impassible, do not consider moving to terrain squares containing them!
Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components:

1. Start line - A single line, "START N", where N is a positive integer in the range 1 ≤ N ≤ 100 which indicated the number of years that must be calculated.

2. Starting Map - A map showing the starting position. The map consists of a set of A lines, each describing B terrain squares. Note that the actual size of the A x B map is not given within the input set but will be in the range 1 to 20 inclusive. The terrain squares in each line are separated from one another by a single space, and each terrain square is a pair "identifier number." The identifier may be one of:

'.' - (period) Field, without wheat
'w' - (lower-case) Field, with wheat
'M' - (upper-case) Mountain
'W' - (upper-case) Water
'Z' - (upper-case) An integer in the range [0..n-1], where n is the number of groups on the map, and 1 ≤ n ≤ 10.
This group identifier will be unique for each group on a given map.

The number is an integer in the range [0,999], inclusive. It is only meaningful for groups (detailing how many people are left in that group), or wheat (which is the amount of wheat remaining).

3. End line - A single line, "END"

Output

For each data set, there will be exactly one output set, and there will be a single blank line separating output sets.

A single output set consists of a series of lines, "GroupID Size Position YearDied", displayed in increasing order of GroupID, where:

· GroupID - The group's identification number.

· Size - The size of the group at the end of N years.

· Position - The position, "(X,Y)" of the group at the end of N years. Where X indicates the column and Y the row, with (0,0) being the most North-West terrain square (the first terrain square in the first line of the StartingMap).

· YearDied - The year (or turn) in which this group died (size fell to 0), represented by a positive integer. If the group is still alive at the end of N years, this field will not be output.

Sample Input

START 5

W 000 W 000 W 000 W 000 W 000 W 000 W 000 W 000

W 000 W 000 . 000 . 000 2 060 . 000 w 345 W 000

W 000 . 000 . 000 . 000 . 000 . 000 . 000 W 000

W 000 1 140 . 000 . 000 0 050 . 000 . 000 W 000

W 000 W 000 . 000 M 000 M 000 . 000 . 000 W 000

W 000 W 000 w 200 M 000 M 000 . 000 3 025 W 000

W 000 W 000 . 000 . 000 . 000 . 000 . 000 W 000

W 000 W 000 . 000 . 000 . 000 . 000 . 000 W 000

W 000 W 000 . 000 w 115 w 115 . 000 . 000 W 000

W 000 W 000 W 000 W 000 W 000 W 000 W 000 W 000

END

START 3

. 000 2 100 . 000 . 000

0 100 1 050 . 000 . 000

. 000 . 000 . 000 . 000

. 000 . 000 . 000 . 000

END

Sample Output

0 0 (4,2) 2

1 57 (4,1)

2 43 (5,1)

3 31 (6,2)

0 72 (1,0)

1 0 (1,1) 1

2 72 (3,1)

2045. Treasure Hunters

Introduction

You've been a treasure hunter for a long time. You're pretty good at disarming traps, sneaking past the natives, and generally getting the goods while leaving your skin intact. That stuff doesn't really worry you, but what really raises a sweat is after each expedition there are always very tense arguments about how to split up the loot. You've worked with all kinds of characters and nobody ever agrees on what each piece of treasure is actually worth. You need to come up with a way of splitting the booty as fairly as possible.

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 5 components:

1. Start line - A single line, "START"

2. Number of Treasures - A single line with a single integer, t, where 1 ≤ t ≤ 8, indicating the number of treasures.

3. Number of Hunters - A single line with a single integer, h, where 1 ≤ h ≤ 6, indicating the number of treasure hunters.

4. Treasure Value List - A series of h lines, one for each hunter in sequence (line 1 for hunter 1, line 2 for hunter 2, etc.). Each line contains a space-separated list of estimated treasure values for that hunter. The first estimate on each line is for treasure 1, the second is for treasure 2, etc., and an estimate for each treasure will appear for every hunter. Each estimate will be a positive integer strictly less than 10000.

5. End line - A single line, "END"

Output

For each input data set, there will be exactly one output set, and there will be exactly one blank line separating output sets.

Each output set consists of multiple lines, where each line represents a hunter (listed in the same order as the corresponding input data set). Each line contains a list of the treasures given to that hunter followed by the total perceived cash value (by that hunter), of all the treasures they receive. Treasures will be listed in ascending order by treasure number, and all values on each line will be space-separated.

Treasures will be divided among the hunters in the fairest way possible. The "fairest" way to divide the treasure is defined to be the distribution with the minimum difference between the highest perceived total value and the lowest perceived total value of treasures received by any hunter. In other words, find the distribution that minimizes the difference between the hunter that gets the "most" and the hunter that gets the "least."

There will not be multiple "fair" distributions.

Sample Input

START

5

3

42 500 350 700 100

250 200 500 1000 75

150 400 800 800 150

END

START

5

3

42 500 350 200 100

250 200 500 1000 75

150 400 800 800 150

END

START

5

3

500 500 350 200 100

250 200 500 1000 75

150 400 800 800 150

END

Sample Output

4 700

3 5 575

1 2 550

1 4 5 342

3 500

2 400

1 2 1000

4 1000

3 5 950

2046. Frogger's For Dinner

Introduction

"Uncle Jacques, " you ask, "What's for dinner?"

"Ask me again in 10 minutes, " Uncle Jacques replies, eyeing the weary-looking frog sitting on the shoulder of Interstate 10, in front of your dilapidated shack.

You notice the potential roadkill as it begins its journey across the vehicle-laden road. You want to know if you should begin boiling a pot of water in anticipation of frog legs for dinner or warm up the leftover possum. You fire up your Swamp 'Puter XL2 and quickly write a program to determine if it is possible for the frog to make it across the road or if it will be hit by a vehicle.

Examining the patch of road in front of your shack, you notice the lanes and shoulders resemble a 10 X 10 grid of squares (shown below). You also notice that the way the frog and the vehicles are moving can be described in "turns". To determine if the frog makes it across the road, you quickly devise a set of rules:

1. At the onset of a run, the frog can start in any square on row 0 (the starting shoulder).

2. At the onset of a run, each vehicle will occupy a square in any column, but only in rows 1-8 (the lanes).

3. Each turn will consist of two steps:

· First, the frog will always remain in the same column and move one row down, towards row 9, his destination (he's not the smartest frog in the world).

· Next, all the vehicles move (at the same time), n squares left or right, depending on which row (lane) they are in, where n is their speed (given in the input). To simulate more approaching vehicles, if a vehicle moves off the grid, it instead "wraps around" and appears from the opposite side. Ex: In the grid below, if a vehicle would move to occupy column -1, it would instead occupy column 9 (column -2 would instead occupy column 8, etc.). Also, if a vehicle would move to occupy column 10, it would instead occupy column 0 (column 11 would instead occupy column 1, etc.).
· Column

· 0123456789

· ----------

· R 0| |<- The frog can start in any square on row 0

· o 1| |(shoulder)

· w 2| /___ |

· 3| \ |cars in rows (lanes) 1-4 move left, or

· 4| |towards column 0

· 5| |

· 6| ___\ |cars in rows (lanes) 5-8 move right, or

· 7| / |towards column 9

· 8| |

· 9| |<- The destination row (shoulder) of the frog

· ----------

4. The frog will succeed in crossing the interstate for a run if it can reach row 9 (without becoming roadkill) after a series of turns starting in ANY column on row 0 (he's not the dumbest frog in the world, either).

5. The frog will become roadkill if at any point it occupies the same square as a vehicle. This includes:

· The frog moving into a square a vehicle occupies, or

· A vehicle "running over" the frog by moving over or into a square the frog occupies.

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will describe the starting conditions of the interstate for a run and will be formatted according to the following description. There will be no blank lines separating data sets.

1. Start line - A single line, "START"

2. The next 8 lines will represent rows 1-8 (the "lanes" of the interstate), starting with row 1. Each line will consist of 10 integers, separated by single spaces. Each integer will represent a column for that row and will be either:

· 0, representing no vehicle occupying that square, or

· a non-zero integer N in the range 1 ≤ N ≤ 9, representing a vehicle is occupying that square and the non-zero integer is its speed. NOTE: The given speeds will NOT result in vehicles moving over other vehicles or into a square occupied by another vehicle (no accidents), since all the vehicles move at the same time and all vehicles on a given row are guaranteed to move at the same speed.

3. End line - A single line, "END"

Output

Output for each data set will be exactly one line of output. The line will either be "LEFTOVER POSSUM" or "FROGGER" (both all caps with no whitespace leading or following).

"LEFTOVER POSSUM" will appear if the frog can make it safely (without becoming roadkill) across the interstate after a series of turns starting in ANY column on row 0.

"FROGGER" will be output for a data set if it fails to meet the criteria for a "LEFTOVER POSSUM" line.

Sample Input

START

3 0 0 0 0 3 0 0 0 3

1 0 0 0 1 0 0 0 0 0

4 0 0 0 0 0 0 4 0 0

0 0 2 0 0 0 0 0 0 2

5 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 2 0 2

0 0 0 4 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

END

START

9 9 9 9 9 9 9 9 9 9

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

END

START

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

END

Sample Output

FROGGER

FROGGER

LEFTOVER POSSUM

