1633. Zipper
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.

For example, consider forming "tcraete" from "cat" and "tree":

String A: cat

String B: tree

String C: tcraete

As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming "catrtee" from "cat" and "tree":

String A: cat

String B: tree

String C: catrtee

Finally, notice that it is impossible to form "cttaree" from "cat" and "tree".
Input. The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.

For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.
Output. For each data set, print:

 Data set n: yes

if the third string can be formed from the first two, or

 Data set n: no

if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
Sample Input

4
cat tree tcraete

cat tree catrtee

cat tree cttaree
aa ab abaa
Sample Output

Data set 1: yes

Data set 2: yes

Data set 3: no
Data set 4: yes

SOLUTION

dynamic programming
Analysis of algorithm

Let s1, s2, s3 – are the given strings and l1, l2, l3 their lengths. It is obvious, that first we must check the equality l1 + l2 = l3.
Let suffix(s1, i) is the suffix of the string s1 that begins from the position i (substring of s1 beginning from the position i and finishes at the end of the string). For example, if s1 = “cattree” then suffix(s1, 4) = “ree” (the numeration of positions begins from 0).
Lets declare two dimensional array m of size MAX = 402 (the third word can have up to 400 symbols), where m[i][j] attains one of the next values:
m[i][j] = 1, if combining the substrings suffix(s1, i) and suffix(s2, j) we can get suffix(s3, i + j).
m[i][j] = 0, if combining the substrings suffix(s1, i) and suffix(s2, j) we can’t get suffix(s3, i + j).
m[i][j] = -1, if we know nothing about possibility to get suffix(s3, i + j) combining substrings suffix(s1, i) and suffix(s2, j).
Example. For the first test we have:

m[2][3] = 1, because from substrings suffix(“cat”, 2) = “t” and suffix(“tree”, 3) = “e” we can obtain suffix(“tcraete”, 2 + 3) = suffix(“tcraete”, 5) = “te”.
m[1][3] = 0, because from the substrings suffix(“cat”, 1) = “at” and suffix(“tree”, 3) = “e” we can’t obtain suffix(“tcraete”, 1 + 3) = suffix(“tcraete”, 4) = “ete”.
Lets write a function canbuild(i, j) that evaluates the value m[i][j].
The symbol s3[i + j] can be equal either to s1[i] or to s2[j] for some i and j. Let s1 can be combined from s2 and s3. If s3[i + j] = s1[i], then we can get suffix(s3, i + j + 1) from the substrings suffix(s1, i + 1) and suffix(s2, j). Likewise if s3[i + j] = s2[i], then from substrings suffix(s1, i) and suffix(s2, j + 1) we can get suffix(s3, i + j + 1). So
1. if s1[i] = s3[i + j] and i < l1, then m[i][j] = m[i + 1][j]
2. if s2[j] = s3[i + j] and j < l2, then m[i][j] = m[i][j + 1]
Example. Connsider the first test. As s1[1] = ‘a’, s3[3] = ‘a’ and 1 < 3, then m[1][2] = m[2][2]. This equality means that if from the words suffix(“cat”, 1) = “at” and suffix(“tree”, 2) = “ee” it is possible to combine suffix(“tcraete”, 3) = “aete”, then from the words suffix(“cat”, 2) = “t” and suffix(“tree”, 2) = “ee” it is posiible to combine suffix(“tcraete”, 4) = “ete”.
The conditions s1[i] = s3[i + j], i < l1, s2[j] = s3[i + j] and j < l2 can simultaneously be true, so it is better to evaluate the value m[i][j] using the formula:

m[i][j] = m[i + 1][j] || m[i][j + 1]
The logic operation “OR” is denoted here as ||.
To solve the problem we must find m[0][0]. We shall evaluate m[i][j] recursively, using the full search with memorization. The returning value of canbuild(i, j) we assign to m[i][j]. In the body of the function canbuild(i, j) we make callse canbuild(i + 1, j) and canbuild(i, j + 1) according to the above two conditions. If after calling canbuild(i, j) the value m[i][j] is not -1, then we simply return m[i][j].

canbuild(i, j)
{

 int res = 0;

 if (m[i][j] is not -1, then it is already evaluated) return m[i][j];

 if s1[i] = s3[i + j] and i < l1, then res = canbuild(i + 1, j)
 if s2[j] = s3[i + j] and j < l2, then res = res || canbuild(i, j + 1)
 return m[i][j] = res; // we memorize the returning value to m[i][j]

}

Before calling canbuild(0, 0) you must assign m[l1][l2] = 1. It means that from substrings suffix(s1, l1) and suffix(s2, l2) you can get suffix(s3, l1 + l2). It is true because each of these substrings is empty.
Example

Consider the fourth test. The words lengths are l1 = 2, l2 = 2, l3 = 4, assign at the beginning m[2][2] = 1. Run canbuild(0, 0). As s1[0] = s2[0] = s3[0] = ‘a’, then m[0][0] = m[1][0] || m[0][1]. Here m[1][0] corresponds combining ‘a’ and ‘ab’ into ‘baa’, and m[0][1] corresponds combining ‘aa’ and ‘b’ into ‘baa’. It is obvious that when the program finishes, we have m[1][0] = 0 and m[0][1] = 1.
