SRM 326 AdditionCycles
Division 2, Level 1

Start with any integer between 00 and 99, inclusive, written as two digits (use a leading zero if the number is less than 10). Add the two digits together. Now concatenate the rightmost digit of the first number with the rightmost digit of the sum to get a new number. If you repeat this process enough times, you'll end up back at the original number. For example
	Start With
	Add Digits
	Combine Second Digits of

the Original and the Sum

	26
	2 + 6 = 08
	"6" and "8" = 68

	68
	6 + 8 = 14 
	"8" and "4" = 84

	84
	8 + 4 = 12
	"4" and "2" = 42

	42
	4 + 2 = 06
	"2" and "6" = 26


In this case, it took us 4 steps to get back to where we started, so we would return 4. Starting with n, return the number of steps it takes to get back to n.

Definition

Class: AdditionCycles
Method: int cycleLength(int n)

Constraints

n will be between 0 and 99, inclusive.

Examples

0) 26

Returns: 4

The example from the problem statement. It goes 26  68  84  42  26, so there are 4 steps for the cycle.

1) 55

Returns: 3

The cycle is 55  50  05  55. Remember to treat numbers under 10 as though there was a leading zero.

2) 0

Returns: 1

Zero comes back to zero at every step - so the length of the cycle is one (00  00)

SRM 326 AdditionCycles

Division 2, Level 1

EXPLANATION

The main challenge here is separating a number into individual digits. This can be done a couple different ways:

1. By converting the number into a string, and then looking at the individual characters of the string. 

2. By using the modulo operator ("%", or "mod" in VB) to figure out the remainder of the number when divided by 10. For example, 16 % 10 is 6 - which is the last digit in the number. Once we've found the last digit, we divide by 10 in order to remove that digit, and repeat the process until we've processed all digits. 

Once we're able to separate a number into its digits, we can process one step of our cycle fairly simply. Once we can process one step, we simply need to repeat that step until we arrive back at the original number (and count each step along the way). None of the cycles are longer than 60 steps, so we need not have any performance concerns.

The overall winner got a head start on the "shortest solution" competition by processing each step with the following terse bit of code: i = i%10 * 10 + (i%10 + i/10) % 10; 

