SRM 326 BerryPacker

Division 1, Level 3
You are selling a number of boxes of berries to a distributor. You are paid per berry, but the distributor only knows how many boxes you are shipping - not how many berries are in each box. To get around this, the distributor employs inspectors to estimate the total number of berries. Each inspector will take a sample of the boxes, count the berries in each of the sample boxes, and use this to extrapolate the total number of berries to pay for. It is up to you to decide how many berries to put in each individual box. The total number of berries to package is given in berries, and all berries must be used. You can put between 1 and 9 berries, inclusive, in each box.

Each inspector n starts at the box numbered first[n] and then proceeds to box first[n]+period[n] and continues inspecting boxes until reaching the end of the boxes (boxes begin numbering at zero). If an inspector were to see a total of 30 berries in the 20 boxes looked at, and if there were 25 boxes altogether, that inspector would give an estimate of 30*25/20=37.5 berries for the entire shipment. If an inspector does not open any boxes, that inspector will estimate that there are zero berries in the shipment. More than one inspector may look at the same box. You will be paid based on the average estimate of the inspectors.

Since you know which boxes each inspector will look at, it is in your best interest to put more berries in those boxes and to choose a number of boxes that will make your shipment seem as large as possible. Assuming that you do so, what is the maximum number of berries you will be paid for?
Definition

Class: BerryPacker
Method: double bestPacking(vector<int> first, vector<int> period,

 int berries)
Constraints

first and period will each contain between 1 and 5 elements, inclusive.
first and period will contain the same number of elements.

Each element of first will be between 0 and 100,000 inclusive.

Each element of period will be between 1 and 100,000 inclusive.

berries will be between 1 and 100,000 inclusive.

Examples

0) {2}
 {500}

 6

Returns: 12.0
There's only one inspector, and he's only going to see one box - box 2 (you don't have nearly enough berries to think about box 502). One way to maximize your payment is to use 4 boxes, put 3 berries in box 2 and 1 berry in each of the other 3 boxes. Inspector sees 3 berries in one box and assumes there are 12 in shipment.
1){0, 1}
{2, 2}

7

Returns: 9.0
Between the two inspectors, each box is going to get looked at once (inspector 0 looks at even boxes, inspector 1 at odd boxes). Your best bet is to put 5 berries in box 1 and 1 berry in boxes 0 and 2. That way inspector 1 sees 5 berries and assumes there are 15. Inspector 0 sees 2 berries in 2 boxes, and estimates a shipment of 3. (15+3)/2=9
SRM 326 BerryPacker

Division 1, Level 3

EXPLANATION

The first thing we need to know in order to decide how to do the packing is the total number of boxes we are going to use - we'll refer to this as n. This number is difficult to decide on, but for any given n the value of the best packing can be determined fairly quickly. Therefore, we simply try every possible n.

Given n, the best packing can be determined greedily - but the evaluation is still somewhat complicated. I'll outline one possible strategy:

For each box from 0 to n-1, find out which inspectors will see this box. We will categorize boxes based on the which inspectors will see the box, as boxes that are seen by the same set of inspectors can be treated the same way. It is clear that when assigning berries we should fill boxes that will be seen by all inspectors before boxes that will be seen by only one. However, it is less clear, for example, whether a box that is seen by inspectors 1, 2 and 3 should be filled before a box seen by inspectors 0 and 1. This is because the value of showing a berry to an inspector varies with the number of boxes that inspector will see. Showing a berry to an inspector who sees only a few boxes will have more impact on the final evaluation than showing a berry to an inspector who sees many boxes.

Moving forward then, our next step is to figure out how many boxes each inspector will see (given our current n). As we count through the boxes, we can simply tally the number of boxes each inspector sees as we go. Because an inspector's estimate is equal to "berries seen"*"number of boxes"/"boxes seen", showing that inspector one berry has an overall value of "number of boxes"/"boxes seen"/"number of inspectors."

We can now calculate the value of one berry in each category of box by looking at which inspectors see that category of box and summing the value of one berry to each of those inspectors. For example, if inspectors 0 and 2 do not see a lot of boxes, we could find that each berry we put in a box that is seen by them is worth 20 berries in the final evaluation. Remember that this evaluation is going to shift with n, as the number of boxes seen by each inspector will change.

Once we know the value of a berry in each category of box (and how many boxes we have of each category), we can greedily assign berries to box categories in order from highest to lowest value. We must also remember that each box must be assigned at least one berry - so we can pre-assign those berries before we start. As we assign berries to boxes, we keep score of the total value of the shipment, and set our overall return value if this n has the best value we've seen thus far.

The constraints are such that we do not need to be very efficient in performing the above evaluations, but it's worth precalculating which inspectors will see each box, and coming up with an efficient way to find out how many boxes each inspector will see for a given value of n. Because there are only 32 possible box categories, we don't need to be terribly efficient in sorting them at each step.

