SRM 326 PoolFiller
Division 2, Level 3
You have built an above-ground pool and you want to know how much water it will hold. The pool structure is built out of stacks of cubes aligned on a grid. layout gives an overhead view showing the height of the cubes in each position of the grid. Here is an example pool:

 16661

 61116

 16661

This pool can hold a total of 15 units of water: 5 units on each of the 3 middle grid locations. After that, any water added to the middle would flow out over the walls (the grid locations of height 6), and any water added to the walls or corners would flow out onto the surrounding ground. When it can, water will always flow to areas of lower height, and no water will "stand" on surfaces such as the pool walls shown here. Water cannot flow through diagonals, so it won't leak out of the middle via the corners. The ground surrounding the pool is at height 0 and can absorb an infinite amount of water. Return the total number of water units that can be held by the pool.

Definition

Class: PoolFiller

Method: int getCapacity(vector<string> layout)
Constraints

layout will contain between 1 and 50 elements, inclusive.

Each element of layout will contain between 1 and 50 characters, inclusive.

Each element of layout will be the same length.

Each character in each element of layout will be a digit between '1' and '9', inclusive.

Examples

0) {

"16661",

"61116",

"16661"

}

Returns: 15
The example from the problem statement.
1){

"999999",

"955119",

"955119",

"999999"

}

Returns: 48

This pool has high walls, with a shallow end on the left and a deeper end on the right. The shallow end has a capacity of 4*4=16, and the deep end has a capacity of 8*4=32.
2){

"111111111",

"115111611",

"131516161",

"115111611",

"111111111"

}

Returns: 7
In this case, we have two separate mini-pools. The one on the right holds 5 units and the one on the left holds 2 (any more than 2 would leak out of the left side).
SRM 326 PoolFiller

Division 2, Level 3

EXPLANATION

The most natural way to solve this problem is by simulation. Basically, we fill every square of the pool up to 9 (the highest level) and then simulate the water flowing out until it's done flowing. We can then total up the amount of water remaining in the pool area, and that will be our pool's total capacity.

The hard part, then, is the simulation. For each square of our grid, we should track two numbers: the height of the pool wall at that square, and the current "flow level" at that square. The flow level represents the working height of that square, which can be either the current water level or the height of the wall if there is no water there. Once we have set our wall heights (set by parsing the input layout) and set our “flow level’s” (all 9s, the maximum), we can then repeatedly call a "FlowOut" function that will simulate the water's flow. We'll keep doing that until "FlowOut" returns a value indicating that no flowing occurred, and thus that our simulation is complete.

At each iteration, "FlowOut" will process each square of the grid as follows:

1. Find the lowest "flow level" among the surrounding grid squares. Treat the "flow level" of a square off the grid as zero.

2. Set this square's "flow level" to match that of its lowest neighbor.

3. If this makes the "flow level" in this square a value lower than the height of the wall in this square, then set the "flow level" back to the wall height (as walls do not flow).

The above approach is not optimal - and it may take many repetitions of the above in order to move out all the excess water. However, the constraints are such that the above approach proves to be fast enough.

