SRM 326 AdditionCycles

Division 2, Level 1

Start with any integer between 00 and 99, inclusive, written as two digits (use a leading zero if the number is less than 10). Add the two digits together. Now concatenate the rightmost digit of the first number with the rightmost digit of the sum to get a new number. If you repeat this process enough times, you'll end up back at the original number. For example

	Start With
	Add Digits
	Combine Second Digits of

the Original and the Sum

	26
	2 + 6 = 08
	"6" and "8" = 68

	68
	6 + 8 = 14
	"8" and "4" = 84

	84
	8 + 4 = 12
	"4" and "2" = 42

	42
	4 + 2 = 06
	"2" and "6" = 26

In this case, it took us 4 steps to get back to where we started, so we would return 4. Starting with n, return the number of steps it takes to get back to n.

Definition

Class: AdditionCycles
Method: int cycleLength(int n)

Constraints

n will be between 0 and 99, inclusive.

Examples

0) 26

Returns: 4

The example from the problem statement. It goes 26  68  84  42  26, so there are 4 steps for the cycle.

1) 55

Returns: 3

The cycle is 55  50  05  55. Remember to treat numbers under 10 as though there was a leading zero.

2) 0

Returns: 1

Zero comes back to zero at every step - so the length of the cycle is one (00  00)

SRM 326 AdditionCycles

Division 2, Level 1

EXPLANATION

The main challenge here is separating a number into individual digits. This can be done a couple different ways:

1. By converting the number into a string, and then looking at the individual characters of the string.

2. By using the modulo operator ("%", or "mod" in VB) to figure out the remainder of the number when divided by 10. For example, 16 % 10 is 6 - which is the last digit in the number. Once we've found the last digit, we divide by 10 in order to remove that digit, and repeat the process until we've processed all digits.

Once we're able to separate a number into its digits, we can process one step of our cycle fairly simply. Once we can process one step, we simply need to repeat that step until we arrive back at the original number (and count each step along the way). None of the cycles are longer than 60 steps, so we need not have any performance concerns.

The overall winner got a head start on the "shortest solution" competition by processing each step with the following terse bit of code: i = i%10 * 10 + (i%10 + i/10) % 10;

SRM 326 PositiveID

Division 2, Level 2, Division 1, Level 1

You are investigating a robbery, and you are sure the robbery was committed by one of the suspects you have information on. Each element of suspects will contain a number of characteristics of that suspect in a comma separated list. For example, suppose we had the following list of suspects:

· suspect 0: "blond, tall, skinny"

· suspect 1: "short, skinny, blond, tattooed"

· suspect 2: "scarred, bald"

You may assume that if a characteristic is not on the list for a suspect then that characteristic does not apply - so in this case we can be sure that suspect 0 is not "tattooed" or "bald" or anything else other than what's listed. Therefore, if we knew that the culprit was "tattooed", we would know for sure that suspect 1 is the guilty party. However, if we knew that the culprit was "skinny" and "blond" we would still be unsure whether suspect 0 or suspect 1 was the robber.

Return the maximum number of facts we could know such that the facts:

1. Are all consistent with at least one of the suspects.

2. Do not uniquely identify the culprit.

In the example above, the value is 2. We could know that the suspect is "skinny" and "blond" - but if we knew anything more than that about the culprit then we would be able to identify the culprit uniquely (or the facts would no longer be consistent with any of the suspects).

Definition

Class: PositiveID
Method: int maximumFacts(vector<string> suspects)

Constraints

suspects will contain between 1 and 50 elements, inclusive.

Each element of suspects will contain between 1 and 50 characters, inclusive.

Elements of suspects will contain only lowercase letters ('a'-'z') and commas (',').

Each element of suspects will not have a comma (',') as the first or last character.

Each element of suspects will not contain two adjacent commas.

Each element of suspects will not contain the same characteristic more than once.

Examples

0) {"blond, tall, skinny",

 "short, skinny, blond, tattooed",

 "scarred, bald"}

Returns: 2

The example from the problem statement.

1) {"gigantic, fluorescent, loud, male"}

Returns: 0

There's only one subject, and he should be easy to find. We cannot know any facts without being able to make a positive ID.

2) {"medium, average, nondescript",

 "medium, average, nondescript"}

Returns: 3

There's no way to tell these two apart - so we could know all 3 facts without being able to make an ID.

SRM 326 PositiveID

Division 2, Level 2, Division 1, Level 1

EXPLANATION

Basically, the problem here is to discover the largest set of facts that apply to more than one suspect (and thus don't identify one subject uniquely). The key realization to solving this problem is that we only have to consider two suspects at a time. We don't have to worry about whether a set of facts applies to 3 or more suspects, as if a set of facts applies to 2 suspects that is enough. On the other side, if a given set of facts doesn't apply completely to at least two suspects then it will either apply to no subjects or it will identify one suspect uniquely. This leads to a fairly simple strategy: for each possible pair of suspects we count how many characteristics they share. We then return the maximum number of shared characteristics found for any pairing.

The remaining challenge, then, is this: given two comma-delimited lists of facts, find the number of facts that are shared between the two. A simple way to approach this is to use the split function on each string in order to make two arrays of strings. You can then loop through the first array, and for each item loop through the second array to see whether it is present in the first list. If it is, increment a counter. Since duplicate and blank characteristics were disallowed, this is fairly straightforward.

SRM 326 PoolFiller

Division 2, Level 3

You have built an above-ground pool and you want to know how much water it will hold. The pool structure is built out of stacks of cubes aligned on a grid. layout gives an overhead view showing the height of the cubes in each position of the grid. Here is an example pool:

 16661

 61116

 16661

This pool can hold a total of 15 units of water: 5 units on each of the 3 middle grid locations. After that, any water added to the middle would flow out over the walls (the grid locations of height 6), and any water added to the walls or corners would flow out onto the surrounding ground. When it can, water will always flow to areas of lower height, and no water will "stand" on surfaces such as the pool walls shown here. Water cannot flow through diagonals, so it won't leak out of the middle via the corners. The ground surrounding the pool is at height 0 and can absorb an infinite amount of water. Return the total number of water units that can be held by the pool.

Definition

Class: PoolFiller

Method: int getCapacity(vector<string> layout)

Constraints

layout will contain between 1 and 50 elements, inclusive.

Each element of layout will contain between 1 and 50 characters, inclusive.

Each element of layout will be the same length.

Each character in each element of layout will be a digit between '1' and '9', inclusive.

Examples

0) {

"16661",

"61116",

"16661"

}

Returns: 15

The example from the problem statement.

1){

"999999",

"955119",

"955119",

"999999"

}

Returns: 48

This pool has high walls, with a shallow end on the left and a deeper end on the right. The shallow end has a capacity of 4*4=16, and the deep end has a capacity of 8*4=32.

2){

"111111111",

"115111611",

"131516161",

"115111611",

"111111111"

}

Returns: 7

In this case, we have two separate mini-pools. The one on the right holds 5 units and the one on the left holds 2 (any more than 2 would leak out of the left side).

SRM 326 PoolFiller

Division 2, Level 3

EXPLANATION

The most natural way to solve this problem is by simulation. Basically, we fill every square of the pool up to 9 (the highest level) and then simulate the water flowing out until it's done flowing. We can then total up the amount of water remaining in the pool area, and that will be our pool's total capacity.

The hard part, then, is the simulation. For each square of our grid, we should track two numbers: the height of the pool wall at that square, and the current "flow level" at that square. The flow level represents the working height of that square, which can be either the current water level or the height of the wall if there is no water there. Once we have set our wall heights (set by parsing the input layout) and set our “flow level’s” (all 9s, the maximum), we can then repeatedly call a "FlowOut" function that will simulate the water's flow. We'll keep doing that until "FlowOut" returns a value indicating that no flowing occurred, and thus that our simulation is complete.

At each iteration, "FlowOut" will process each square of the grid as follows:

1. Find the lowest "flow level" among the surrounding grid squares. Treat the "flow level" of a square off the grid as zero.

2. Set this square's "flow level" to match that of its lowest neighbor.

3. If this makes the "flow level" in this square a value lower than the height of the wall in this square, then set the "flow level" back to the wall height (as walls do not flow).

The above approach is not optimal - and it may take many repetitions of the above in order to move out all the excess water. However, the constraints are such that the above approach proves to be fast enough.

SRM 326 InscribedTriangles

Division 1, Level 2

A triangle is "inscribed" in a circle if all 3 points of the triangle are on the edge of the circle. For this problem, our circle will be centered at the origin and have a radius of 5. Our goal is to find the largest triangle (by area) we can inscribe in this circle. Normally, this would be any equilateral triangle, but in this case we have the added restriction that each point of our triangle must be within one (or more) of the valid ranges of degrees. The degree ranges are given in thousandths of degrees in corresponding elements of angleFrom and angleTo. For each range, angleFrom will be less than or equal to angleTo and each will be between 0 and 360000. All ranges are inclusive; see the examples for clarification. Return the area of the largest inscribed triangle that can be made while following these restrictions. If no triangle can be made, return 0.

Definition

Class: InscribedTriangles
Method: double findLargest(vector<int> angleFrom,

 vector<int> angleTo)

Constraints

angleFrom and angleTo will each contain between 1 and 30 elements, inclusive.

angleFrom and angleTo will contain the same number of elements.

Each element of angleFrom and angleTo will be between 0 and 360000, inclusive.

Each element of angleFrom will be less than or equal to the corresponding element of angleTo.

Examples

0) {0}

 {360000}

Returns: 32.47595264191645

We can use any point we want on the circle - so we can draw an equilateral triangle (which will be the biggest we can ever draw).

1) {15000, 25000, 100000, 265000, 330000}

 {15000, 25000, 100000, 265000, 330000}

Returns: 27.433829549752186

In this case, each of our ranges are single points. The biggest triangle can be made by using the points at 15°, 100°, and 265°.

2) {245900, 246500, 249900}

 {245915, 246611, 252901}

Returns: 0.002789909594714814

We only have 3 small ranges, all near to each other - so our best triangle is still really small.

3) {42}

 {42}

Returns: 0.0

It's hard to draw a triangle with one point.

SRM 326 InscribedTriangles

Division 1, Level 2

EXPLANATION

Geometry problems have a reputation for being tricky, and this problem will do nothing to dispel that perception. Since there are too many possible angles to try a brute force solution, we need to prune the possibilities we consider by having some idea of what our possible maximum triangles can look like. We can categorize these possible maximum triangles by the number of points that are constrained in at least one direction (i.e. points that lie on the edge of a degree range):

0. Our best triangle has no constrained points

We can be certain that if a maximum triangle exists with no points on degree range boundaries then another triangle exists with at least one point on a degree range boundary. This holds because rotating our triangle has no effect on area and thus we can simply rotate the triangle until at least one point is constrained. This allows us to effectively ignore this case.

1. Our best triangle has one constrained point

If our best triangle has only one constrained point, then we can be sure that the triangle is equilateral. Otherwise, we could move one or both of the unconstrained points in order to increase the triangle's area (as at least one of the two unconstrained points would not be on the midpoint of the arc between the other two points). Since we know one point is constrained, it is sufficient to loop through all boundary points and for each of them test whether an equilateral can be made involving that point. To check, we see if the points at (boundary angle+120°) and (boundary angle+240°) are available for use. If they are, we have found an equilateral and we're done - as this will always be the largest triangle.

2. Our best triangle has 2 constrained points

If we pick any two points on a circle, the maximum area triangle will be formed by having the third point halfway between the first two points on either one side or the other. Therefore, we can iterate through each pair of boundary points and check whether their midpoint on either side of the circle is in a usable space. If it is not, then the best available triangle involving those two points will have all 3 points constrained and will be found during our last step.

3. Our best triangle has 3 constrained points

This is the simplest case to check - we simply iterate through each set of 3 boundary points and find the angles of all triangles formed. As we have at most 60 boundary points, this does not present a time challenge. If we had a larger set, we could prune the number of possibilities tried by only considering points nearest to the midpoint of each two points (and then only in cases where the precise midpoint was unavailable).

Putting it together

If we don't find an equilateral triangle, as per 1 above, we loop through all the possible triangles described in 2 and 3 above and keep track of the largest area found. To calculate the area of a given triangle from the angles involved, we use the normal triangle area formula involving the cross product. That formula requires x/y co-ordinates, which on our circle are simply radius*cos(angle) and radius*sin(angle) respectively.

SRM 326 BerryPacker

Division 1, Level 3

You are selling a number of boxes of berries to a distributor. You are paid per berry, but the distributor only knows how many boxes you are shipping - not how many berries are in each box. To get around this, the distributor employs inspectors to estimate the total number of berries. Each inspector will take a sample of the boxes, count the berries in each of the sample boxes, and use this to extrapolate the total number of berries to pay for. It is up to you to decide how many berries to put in each individual box. The total number of berries to package is given in berries, and all berries must be used. You can put between 1 and 9 berries, inclusive, in each box.

Each inspector n starts at the box numbered first[n] and then proceeds to box first[n]+period[n] and continues inspecting boxes until reaching the end of the boxes (boxes begin numbering at zero). If an inspector were to see a total of 30 berries in the 20 boxes looked at, and if there were 25 boxes altogether, that inspector would give an estimate of 30*25/20=37.5 berries for the entire shipment. If an inspector does not open any boxes, that inspector will estimate that there are zero berries in the shipment. More than one inspector may look at the same box. You will be paid based on the average estimate of the inspectors.

Since you know which boxes each inspector will look at, it is in your best interest to put more berries in those boxes and to choose a number of boxes that will make your shipment seem as large as possible. Assuming that you do so, what is the maximum number of berries you will be paid for?

Definition

Class: BerryPacker

Method: double bestPacking(vector<int> first, vector<int> period,

 int berries)

Constraints

first and period will each contain between 1 and 5 elements, inclusive.

first and period will contain the same number of elements.

Each element of first will be between 0 and 100,000 inclusive.

Each element of period will be between 1 and 100,000 inclusive.

berries will be between 1 and 100,000 inclusive.

Examples

0) {2}

 {500}

 6

Returns: 12.0

There's only one inspector, and he's only going to see one box - box 2 (you don't have nearly enough berries to think about box 502). One way to maximize your payment is to use 4 boxes, put 3 berries in box 2 and 1 berry in each of the other 3 boxes. Inspector sees 3 berries in one box and assumes there are 12 in shipment.

1){0, 1}

{2, 2}

7

Returns: 9.0

Between the two inspectors, each box is going to get looked at once (inspector 0 looks at even boxes, inspector 1 at odd boxes). Your best bet is to put 5 berries in box 1 and 1 berry in boxes 0 and 2. That way inspector 1 sees 5 berries and assumes there are 15. Inspector 0 sees 2 berries in 2 boxes, and estimates a shipment of 3. (15+3)/2=9

SRM 326 BerryPacker

Division 1, Level 3

EXPLANATION

The first thing we need to know in order to decide how to do the packing is the total number of boxes we are going to use - we'll refer to this as n. This number is difficult to decide on, but for any given n the value of the best packing can be determined fairly quickly. Therefore, we simply try every possible n.

Given n, the best packing can be determined greedily - but the evaluation is still somewhat complicated. I'll outline one possible strategy:

For each box from 0 to n-1, find out which inspectors will see this box. We will categorize boxes based on the which inspectors will see the box, as boxes that are seen by the same set of inspectors can be treated the same way. It is clear that when assigning berries we should fill boxes that will be seen by all inspectors before boxes that will be seen by only one. However, it is less clear, for example, whether a box that is seen by inspectors 1, 2 and 3 should be filled before a box seen by inspectors 0 and 1. This is because the value of showing a berry to an inspector varies with the number of boxes that inspector will see. Showing a berry to an inspector who sees only a few boxes will have more impact on the final evaluation than showing a berry to an inspector who sees many boxes.

Moving forward then, our next step is to figure out how many boxes each inspector will see (given our current n). As we count through the boxes, we can simply tally the number of boxes each inspector sees as we go. Because an inspector's estimate is equal to "berries seen"*"number of boxes"/"boxes seen", showing that inspector one berry has an overall value of "number of boxes"/"boxes seen"/"number of inspectors."

We can now calculate the value of one berry in each category of box by looking at which inspectors see that category of box and summing the value of one berry to each of those inspectors. For example, if inspectors 0 and 2 do not see a lot of boxes, we could find that each berry we put in a box that is seen by them is worth 20 berries in the final evaluation. Remember that this evaluation is going to shift with n, as the number of boxes seen by each inspector will change.

Once we know the value of a berry in each category of box (and how many boxes we have of each category), we can greedily assign berries to box categories in order from highest to lowest value. We must also remember that each box must be assigned at least one berry - so we can pre-assign those berries before we start. As we assign berries to boxes, we keep score of the total value of the shipment, and set our overall return value if this n has the best value we've seen thus far.

The constraints are such that we do not need to be very efficient in performing the above evaluations, but it's worth precalculating which inspectors will see each box, and coming up with an efficient way to find out how many boxes each inspector will see for a given value of n. Because there are only 32 possible box categories, we don't need to be terribly efficient in sorting them at each step.

