10739. String to Palindrome
In this problem you are asked to convert a string into a
palindrome with minimum number of operations. The operations are described
below. Here you’d have the ultimate freedom. You are allowed to:
·
Add any character at any position
·
Remove any character from any position
·
Replace any character at any position with another
character
Every operation you do on the string would count for a
unit cost. You'd have to keep that as low as possible.
For example, to convert “abccda" you would
need at least two operations if we allowed you only to add characters. But when
you have the option to replace any character you can do it with only one operation.
We hope you’d be able to use this feature to your advantage.
Input. Contains
several test cases. The first line gives you the number of test cases T (1
≤ T ≤ 10). Then T test cases will follow, each
in one line. The input for each test case consists of a string containing lower
case letters only. You can safely assume that the length of this string will
not exceed 1000 characters.
Output. For each set of input print the
test case number first. Then print the minimum number of characters needed to
turn the given string into a palindrome.
6
tanbirahmed
shahriarmanzoor
monirulhasan
syedmonowarhossain
sadrulhabibchowdhury
mohammadsajjadhossain
Case 1: 5
Case 2: 7
Case 3: 6
Case 4: 8
Case 5: 8
Case 6: 8
динамическое программирование
Пусть f(i, j) содержит наименьшее
количество операций, за которое можно преобразовать строку Si..j в палиндром.
1. Если строка состоит из одной
буквы или является пустой, то она является палиндромом: f(i, j) = 0 при j – i
< 1.
2. Если Si = Sj,
то строка Si..j является палиндромом только если
палиндромом является Si+1..j-1. В этом случае f(i, j)
= f(i + 1, j – 1).
3. Иначе следует рассмотреть три
варианта преобразования строки:
·
удаляем первый символ: f(i, j) = 1 + f(i + 1, j);
·
удаляем последний символ: f(i, j) = 1 + f(i, j – 1);
·
заменяем последний символ на первый: f(i,
j) = 1 + f(i + 1, j – 1);
Или то же самое что f(i, j)
= 1 + min(f(i + 1, j), f(i, j – 1), f(i + 1, j – 1));
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAX 1001
using namespace
std;
char s[MAX];
int dp[MAX][MAX];
int i, j, t, n, len;
int f(int
i, int j)
{
if (j - i
< 1) return 0;
if (dp[i][j]
!= -1) return dp[i][j];
if (s[i] ==
s[j]) return dp[i][j] = f(i+1,j-1);
return
dp[i][j] = 1 + min(min(f(i+1,j),f(i,j-1)),f(i+1,j-1));
}
int main(void)
{
scanf("%d\n",&n);
for(t = 1; t
<= n; t++)
{
gets(s); len = strlen(s);
memset(dp,-1,sizeof(dp));
printf("Case
%d: %d\n",t,f(0,len-1));
}
}