15. Mouse and corns
In the Indian temple the floor has rectangular form filled with identical square tiles 1 × 1. Each tile contains from 0 to k (k ≤ 30000) corns. A mouse runs out from a left lower corner and go to the exit in right upper corner.

Mouse can go only right or forward, collecting all the corns from the tiles where it resides.

Find the route, where mouse can take as much corn as possible.
Input. The first line contains m and n (1 ≤ m, n ≤ 100) – the floor size. Next we have m lines, starting from top, each contains n numbers – the number of corns on the floor.
Output. Print the route of the mouse in format: RRFFFRF (F – step forward, R – step right).
	Sample input
	Sample output

	2 3
3 2 4
1 5 1
	RFR


SOLUTION
dynamic programming
Algorithm analysis
For the convenience of further calculations rotate the board upside down. The vertical and horizontal tiles we count starting from 1. Then the mouse route will run from the upper left corner – the tile with coordinates (1, 1), into lower right corner – the tile with coordinates (m, n). One step down the board will be encoded by the letter F.


[image: image1.emf]3 2 4

1 5 1 1

2

1 2 3

RFR


Tile with coordinates (i, j) contains a[i][j] corns. Let res[i][j] contains maximum number of corns that can be collected while moving from the upper left corner to the tile (i, j). Into the tile (i, j) we can come either from (i – 1, j) or from (i, j – 1), so
res[i][j] = max(res[i – 1][j], res[i][j – 1]) + a[i][j]
Its possible to avoid the array res, making calculations in the array а. Let’s pass the floor tiles (array cells) from top to bottom and left to right, assigning
а[i][j] = max(a[i – 1][j], a[i][j – 1]) + a[i][j]

Initially, assign -1 to all cells of zero’s row and zero’s column. However, for correct recalculation of value а[1][1] you need to reset (assign to 0) of of the cells: a[0][1] or a[1][0]. In this case the new value of а[1][1] becomes max(a[0][1], a[1][0]) + a[1][1] = 0 + a[1][1] = a[1][1]. Further all the values а[i][j] will be calculated correctly.
After the calculations a[i][j] will contain the maximum number of corns that can be collected upon reaching tile (i, j). The state of array а after the calculations looks like:

[image: image2.emf]4 8 12

1 6 7 1

2

1 2 3


Algorithm realization
Store the information about the number of corns in array a. So on the tile with coordinates (i, j) there is a[i][j] corns. The route of mouse movements will be stored in array pos with the length m + n – 1 (m and n are sizes of the floor).
#define MAX 102

int a[MAX][MAX];

char pos[2*MAX];

Read the input data. As the tiles can contain 0 corns, initialize the array cells with -1. Rotate the board upside down.

scanf("%d %d",&m,&n);

memset(a,-1,sizeof(a));

for(i = 1; i <= m; i++)  

for(j = 1; j <= n; j++)

  scanf("%d",&a[m-i+1][j]);

Recalculate the cells of array а so that а[i][j] will contains the maximum number of corns that can be picked up upon reaching the tile (i, j).

a[0][1] = 0;

for(i = 1; i <= m; i++)  

for(j = 1; j <= n; j++)

  a[i][j] = max(a[i-1][j],a[i][j-1]) + a[i][j];

Starting from the tile (i, j) = (m, n) we move to (1, 1) and store the route of mouse movement into array pos. From the tile (i, j) we should move into (i – 1, j) or into (i, j – 1) depending on which value a[i – 1][j] or a[i][j – 1] is greater.
i = m; j = n; ptr = 0;

while(i + j > 2)

{

  if (a[i-1][j] > a[i][j-1])

  {

    pos[ptr] = 'F';

    i--;

  }

  else

  {

    pos[ptr] = 'R';

    j--;

  }

  ptr++;

}

Print the route of mouse movement.

while(ptr--) printf("%c",pos[ptr]);

printf("\n");

_1546632251.vsd
3


2


4


1


5


1


1


2


1


2


3


RFR



_1546683458.vsd
4


8


12


1


6


7


1


2


1


2


3



