44. The number of ones
In arithmetic expression you are allowed to use the number 1, operations of addition, multiplication and parenthesis. What is the minimum number of ones you need to obtain the positive integer n?

Input. One number n (1 ≤ n ≤ 5000).

Output. The required number of ones.
	Sample input
	Sample output

	7
	6

SOLUTION
dynamic programming
Algorithm analysis

Let f(n) equals to the smallest number of ones, with which you can get a number n. Obviously that f(1) = 1.
Number 2 can only be represented as the sum of two ones: 2 = 1 + 1. Therefore, f(2) = 2. Number 3 can only be represented as the sum of three ones: 3 = 1 + 1 + 1. Therefore, f(3) = 3.

Number 4 can be represented either as 4 = 1 + 1 + 1 + 1, or 4 = (1 + 1) * (1 + 1). However, in both cases, 4 ones are used. Hence f(4) = 4.
Consider the required expression with result n.
1. Let the last executed operation be addition. Let for example, the first term i contains f(i) ones, and the second term n – i contains f(n – i) ones. The value of i must be chosen so that the sum f(i) + f(n – i) is minimized.

[image: image1.emf]i n-i +

f(i) f(n-i)

The value of i is enough to iterate up to n / 2, since it can be assumed that the first term is not greater than the second one. Thus we have the relation:
f(n) =
[image: image2.wmf](

)

)

(

)

(

min

2

/

1

i

n

f

i

f

n

i

-

+

£

£

2. Let the last executed operation in expression was multiplication. Let for example, the first term i contains f(i) ones, and the second term n / i contains f(n / i) ones. This case occurs if n is divisible by i.

[image: image3.emf]i n/ i *

f(i) f(n/i)

The value of i must be chosen so that the sum f(i) + f(n / i) is minimized. The value of i is enough to iterate up to
[image: image4.wmf]ë

û

n

. Thus we have the relation:
f(n) =
[image: image5.wmf](

)

)

/

(

)

(

min

1

i

n

f

i

f

n

i

+

£

£

So
f(n) =
[image: image6.wmf](

)

(

)

÷

ø

ö

ç

è

æ

+

-

+

£

£

£

£

)

/

(

)

(

min

,

)

(

)

(

min

min

1

2

/

1

i

n

f

i

f

i

n

f

i

f

n

i

n

i

Example
Compute the answer for n = 7:
f(7) = f(6) + f(1) = (f(2) + f(3)) + f(1) = 2 + 3 + 1 = 6

Number 7 can be represented with 6 ones:

7 = (1 + 1) * (1 + 1 + 1) + 1
Algorithm realization

Declare the array res[5001], initialize res[1] with 1.
int res[5001];
scanf("%d",&n);

res[1] = 1;

Then sequentially compute the values res[2], res[3], …, res[n] according to the formula above.

for(i = 2; i <= n; i++)

{

 res[i] = i;

 for(j = 1; 2 * j < i; j++)

 if (res[j] + res[i-j] < res[i]) res[i] = res[j] + res[i-j];

 for(j = 2; j * j <= i; j++)

 if (i % j == 0)

 if (res[j] + res[i/j] < res[i]) res[i] = res[j] + res[i/j];

}

Print the answer.

printf("%d\n",res[n]);

Algorithm realization – recursion with memoization
#include <cstdio>

#include <cstring>

#include <algorithm>

#define INF 2000000000

using namespace std;

int n;

int dp[5001];

int f(int n)

{

 if (n == 1) return 1;

 if (dp[n] != -1) return dp[n];

 int res = INF;

 for(int i = 1; i <= n / 2; i++)

 res = min(res,f(i) + f(n - i));

 for(int i = 2; i * i <= n; i++)

 if (n % i == 0) res = min(res,f(i) + f(n/i));

 return dp[n] = res;

}

int main(void)

{

 memset(dp,-1,sizeof(dp));

 scanf("%d",&n);

 printf("%d\n",f(n));

 return 0;

}

Java realization

import java.util.*;
public class Main
{
 public static int MAX = 5001;
 static int res[] = new int[MAX];
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 res[1] = 1;
 for(int i = 2; i <= n; i++)
 {
 res[i] = i;
 for(int j = 1; 2 * j < i; j++)
 if (res[j] + res[i-j] < res[i]) res[i] = res[j] + res[i-j];
 for(int j = 2; j * j <= i; j++)
 if (i % j == 0)
 if (res[j] + res[i/j] < res[i]) res[i] = res[j] + res[i/j];
 }
 System.out.println(res[n]);
 con.close();
 }
}
_1698342624.vsd
i

n / i

*

f(i)

f(n / i)

_1698342687.vsd
i

n - i

+

f(i)

f(n - i)

_1345206015.unknown

_1345206194.unknown

_1345206193.unknown

_1345205285.unknown

