66. The director’s visitors
The secretary of school Martha Georgiyivna starts her every working day with pretension to director:

- Here you, Ivan Ivanovych, already bought the program for scheduling to the deputy from educational part. And what do I have to do? I need to make the graphic of visitors according to Your needs in fact. And you didn’t buy the program for work planning for me.

Please try to help secretary in her work. You have to organize the graphic of the visitors based on their wishes left in the secretary book.

Receiving two visitors at the same time is prohibited. When meeting with one visitor is finished, the meeting with another visitor can start – they can meet at the cabinet door.

Input. The first line contains the number of visitors n (n ≤ 1000) who signed up for a meeting. There are two numbers T1i and T2i in each of the next n lines, separated with one space. The meeting with director starts at T1i, and at T2i the meeting ends. The time is written in format hh:mm. It is known that n ≤ 1000, time is given during one day, and T2i ≥ T1i for all i.

Output. Print the maximum number of visitors, who will be able to have a meeting with director of school during the working day.
	Sample input
	Sample output

	4

09:10 13:05

14:25 14:30

14:20 15:15

15:00 17:00
	3

SOLUTION
greedy
Algorithm analysis
Convert time to minutes. Сreate an array of segments – time intervals [T1i; T2i). Sort them in ascending order of finish time.

Next, greedily select visitors: iterate over the intervals from left to right and select those intervals that do not intersect with already selected.
Algorithm realization
Declare the class segment, that will store the time interval [start; fin).
class segment
{

public:

 int start, fin;

 segment(int start, int fin) : start(start), fin(fin) {}

};

Store the set of input intervals in the vector v.
vector<segment> v;

Function f to sort the segments. The intervals are sorted in ascending order of their finish time.
int f(segment a, segment b)

{

 return a.fin <= b.fin;

}

The main part of the program. Read the input data.
scanf("%d", &n);

while (n--)

{

 scanf("%d:%d %d:%d", &h1, &m1, &h2, &m2);
Save the time in intervals in minutes.
 v.push_back(segment(h1 * 60 + m1, h2 * 60 + m2));

}

Sort the time intervals.
sort(v.begin(), v.end(), f);

We accept a visitor who has a zero interval (intervals are numbered from zero). Let the current visitor accepted by director, corresponds to the time interval cur. Since the director will always accept a visitor number zero, set cur = 0. In the variable res we count the number of accepted visitors. Since director accepts visitor number 0, initialize res = 1.
cur = 0; res = 1;
Iterate the intervals, starting from i = 1.
for (i = 1; i < v.size(); i++)

{
Look for an interval, the start of which is not less than the finish time of the current one. We accept a visitor from this interval and set this interval as current.
 if (v[i].start >= v[cur].fin)

 {

 cur = i;

 res++;

 }

}

Print the number of accepted visitors.
printf("%d\n", res);
Algorithm realization – vector pairs
Store the array of segments in a vector v.
vector<pair<int, int> > v;
Read the input data. Convert time to minutes. Put the finish time first in a pair, since by default the vector of pairs is sorted by the first component.
scanf("%d", &n);

while (n--)

{

 scanf("%d:%d %d:%d", &h1, &m1, &h2, &m2);

 v.push_back(make_pair(h2 * 60 + m2, h1 * 60 + m1));

}

Sort the pairs.
sort(v.begin(), v.end());

In the variable res count the number of selected segments.
i = res = 0;

while (i < v.size())

{
The end of the next selected segment store in the variable temp.
 res++; temp = v[i++].first; // end
Look for the next segment, that starts no earlier than temp.
 while (i < v.size() && v[i].second < temp) i++;

}

Print the number of accepted visitors.
printf("%d\n", res);

Java realization
import java.util.*;
class Segment
{
 int start, fin;
 public Segment(int start, int fin)
 {
 this.start = start;
 this.fin = fin;
 }
}
public class Main
{
 public static class MyFun implements Comparator<Segment>
 {
 public int compare(Segment a, Segment b)
 {
 return a.fin - b.fin;
 }
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 ArrayList<Segment> seg = new ArrayList<Segment>();
 for (int i = 0; i < n; i++)
 {
 String s = con.next();
 StringTokenizer st = new StringTokenizer(s, ":");
 int h = Integer.parseInt(st.nextToken());
 int m = Integer.parseInt(st.nextToken());
 int start = h * 60 + m;
 s = con.next();
 st = new StringTokenizer(s, ":");
 h = Integer.parseInt(st.nextToken());
 m = Integer.parseInt(st.nextToken());
 int fin = h * 60 + m;
 seg.add(new Segment(start,fin));
 }
 Collections.sort(seg, new MyFun());
 int cur = 0, res = 1;
 for (int i = 1; i < seg.size(); i++)
 {
 if (seg.get(i).start >= seg.get(cur).fin)
 {
 cur = i;
 res++;
 }
 }
 System.out.println(res);
 con.close();
 }
}
