977. Is it a Tree?
An undirected graph without loops and multiple edges is given by an adjacency matrix. Determine whether this graph is a tree.
Input. The first line contains the number of vertices n (1 ≤ n ≤ 100) in the graph. Then, an adjacency matrix of size n × n is given, where 1 indicates the presence of an edge, and 0 indicates its absence. The matrix is symmetric with respect to the main diagonal.

Output. Print “YES” if the graph is a tree, and “NO” otherwise.
	Sample input
	Sample output

	3

0 1 0

1 0 1

0 1 0
	YES

SOLUTION
graphs – depth first search
Algorithm analysis

A graph with n vertices is a tree if and only if:
1. The graph is connected. Start a depth-first search from the first vertex. Count the number of visited vertices during the search. If it equals n, then the graph is connected.
2. |V| = |E| + 1. If the graph is a tree, then it contains n – 1 edges.
3. The graph does not contain cycles. Start a depth-first search from the first vertex. If a back edge exists, then the graph has a cycle and is not a tree.
Satisfying conditions 1) and 2) or 1) and 3) is sufficient for the graph to be a tree.
Example

The graph provided in the example is a tree.

[image: image1.emf]3

2

1

Algorithm realization – checking the conditions 1) and 3)
Declare the adjacency matrix of the graph g and the array used.
#define MAX 110

int m[MAX][MAX], used[MAX];
The dfs function performs a depth-first search starting from vertex v. The parent of vertex v is p. If a cycle is detected, the flag variable is set to 1.
void dfs(int v, int p)

{
If the graph is no longer a tree (flag = 1), there is no need to continue the search.
 if (flag) return;
Mark the vertex v as visited.
 used[v] = 1;
The vertex v is visited, increase c by 1.
 c++;

The edge (v, i) will be a back edge and form a cycle if i ≠ p and vertex i is already visited (used[i] = 1). If a cycle is detected, set flag = 1. If no cycle is detected, continue the search from vertex i.
 for(int i = 0; i < n; i++)

 if ((i != p) && g[v][i])

 if(used[i]) flag = 1; else dfs(i,v);

}

The main part of the program. Read the input data.
scanf("%d",&n);

for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

 scanf("%d",&g[i][j]);

Count the number of visited vertices during the depth-first search in the variable c. Set flag = 0 if there is no cycle in the graph. If a cycle is detected, flag becomes 1.
c = 0;
flag = 0;

All vertices are initially unvisited (initialize the array used with zeroes).
memset(used,0,sizeof(used));

Start the depth-first search from vertex 0. Since it is the root of the tree, it has no parent. Pass the value -1 as the second argument to the dfs function.
dfs(0,-1);

The graph is not a tree if there is a back edge (flag = 1) or if the graph is not connected (c ≠ n).
if (flag || (c != n)) printf("NO\n"); else printf("YES\n");

Algorithm realization – checking the conditions 1) and 2)
Declare the adjacency matrix of the graph g and the array used.
#define MAX 101

int g[MAX][MAX], used[MAX];

The dfs function implements depth-first search from vertex v.
void dfs(int v)

{
Mark the vertex v as visited.
 used[v] = 1;
Vertex v is visited, increase c by 1.
 c++;
Iterate over the vertices i, that can be reached from v. Moving from v to i is possible if:
· There is an edge (v, i), that is, g[v][i] = 1;
· The vertex i is not visited (used[i] = 0)
If both conditions are true, we continue the depth-first search from vertex i.
 for (int i = 1; i <= n; i++)

 if (g[v][i] && !used[i]) dfs(i);

}

The main part of the program. Read the input value of n.
scanf("%d", &n);
Count the number of edges in the graph in the variable Edges.
Edges = 0;
All vertices are initially unvisited (initialize the array used with zeroes).
memset(used, 0, sizeof(used));

Read the adjacency matrix g. Count the number of edges in the graph.
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

{

 scanf("%d", &g[i][j]);

 Edges += g[i][j];

}

Since the graph is undirected, edges (u, v) and (v, u) are considered the same. Divide the value of Edges by 2.
Edges /= 2;

Count the number of visited vertices during the depth-first search in variable c.
c = 0;

Start the depth-first search from the vertex 1.
dfs(1);

The graph is a tree if the number of edges in it equals n – 1, and also if it is connected (c = n).
if ((Edges == n - 1) && (c == n)) printf("YES\n");
else printf("NO\n");

Java realization
import java.util.*;
//import java.io.*;
public class Main
{
 static int c = 0;

 static int m[][], used[];
 static void dfs(int v)
 {
 used[v] = 1; c++;
 for(int i = 0; i < m.length; i++)
 if (m[v][i]== 1 && used[i] == 0) dfs(i);
 }
 public static void main(String[] args) //throws IOException
 {
 Scanner con = new Scanner(System.in);
 //Scanner con = new Scanner(new FileReader ("977.in"));
 int n = con.nextInt();
 m = new int[n][n];
 used = new int[n];
 Arrays.fill(used, 0);
 int Edges = 0;
 for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 {
 m[i][j] = con.nextInt();
 Edges += m[i][j];
 }
 dfs(0); Edges /= 2;
 if ((Edges == n - 1) && (c == n))
 System.out.printf("YES");
 else
 System.out.printf("NO");
 }
}
Python realization – checking the conditions 1) and 3)
The dfs function performs a depth-first search starting from vertex v. The parent of vertex v is p. If a cycle is detected, the flag variable is set to 1.
def dfs(v, p):
Declare the global variables used by the function.

 global flag, c
If the graph is no longer a tree (flag = 1), there is no need to continue the search.
 if flag: return
Mark the vertex v as visited.
 used[v] = 1
The vertex v is visited, increase c by 1.
 c += 1
The edge (v, i) will be a back edge and form a cycle if i ≠ p and vertex i is already visited (used[i] = 1). If a cycle is detected, set flag = 1. If no cycle is detected, continue the search from vertex i.
 for i in range(n):

 if i != p and g[v][i]:

 if used[i]: flag = 1

 else: dfs(i, v)

The main part of the program. Read the input value of n.
n = int(input())
Count the number of visited vertices during the depth-first search in the variable c. Set flag = 0 if there is no cycle in the graph. When a cycle is detected, flag becomes 1.
c = 0

flag = 0
All vertices are initially unvisited (initialize the list used with zeroes).
used = [0] * n
Create an adjacency matrix g, initially filled with zeroes.
g = [[0] * n for _ in range(n)]

Read the input adjacency matrix.

for i in range(n):

 g[i] = list(map(int, input().split()))

Start the depth-first search from vertex 0. Since it is the root of the tree, it has no parent. Pass the value -1 as the second argument to the dfs function.
dfs(0, -1)

The graph is not a tree if there is a back edge (flag = 1) or if the graph is not connected (c ≠ n).
if flag or c != n:

 print("NO")

else:

 print("YES")

Python realization – checking the conditions 1) and 2)
The dfs function implements depth-first search from vertex v.
def dfs(v):

 global c
Mark the vertex v as visited.
 used[v] = 1
The vertex v is visited, increase c by 1.
 c += 1
Iterate over the vertices i, that can be reached from v. Moving from v to i is possible if:
· There is an edge (v, i), that is, g[v][i] = 1;
· The vertex i is not visited (used[i] = 0)
If both conditions are true, we continue the depth-first search from vertex i.
 for i in range(1, n + 1):

 if g[v][i] and not used[i]: dfs(i)

The main part of the program. Read the input value of n.
n = int(input())
Count the number of edges in the graph in the variable Edges.
Edges = 0
All vertices are initially unvisited (initialize the array used with zeroes).
used = [0] * (n + 1)
Create an adjacency matrix g, initially filled with zeroes.
g = [[0] * (n + 1) for _ in range(n + 1)]

Read the adjacency matrix g. Count the number of edges in the graph.
for i in range(1, n + 1):

 g[i] = [0] + list(map(int, input().split()))
 Edges += sum(g[i])

Since the graph is undirected, edges (u, v) and (v, u) are considered the same. Divide the value of Edges by 2.
Edges //= 2

Count the number of visited vertices during the depth-first search in variable c.
c = 0
Start the depth-first search from the vertex 1.
dfs(1)

The graph is a tree if the number of edges in it equals n – 1, and also if it is connected (c = n).
if Edges == n - 1 and c == n:

 print("YES")

else:

 print("NO")

_1756394126.vsd
3

2

1

