10047. LinkedList Intersection
Find the point of intersection of two singly linked lists. Return the pointer to the node where the intersection of two lists starts.

Definition of a single linked list:

//Java
class ListNode {
 int val;
 ListNode next;
 ListNode(int x) {
 val = x;
 next = null;
 }
}
// C++
class ListNode
{

public:

 int val;

 ListNode *next;

 ListNode(int x) : val(x), next(NULL) {}

};

Implement a function intersection that returns a pointer to the node where the intersection of two singly linked lists starts.

// Java
ListNode intersection(ListNode l1, ListNode l2)
// C++
ListNode* intersection(ListNode *l1, ListNode *l2)

Example

[image: image1.emf]1234

789

56

l

1

l

2

res

Function intersection must return a pointer to the node with value 7.

SOLUTION
linked list
Algorithm analysis
Let's assume that input lists have the same length. Set up to each of its heads a pointer. Move consecutively both pointers one position to the right until they point to the same memory location.
However, in our case, the lengths of the lists may be different. Let lenA and lenB be the lengths of the lists (they can be computed in O(n)). Let's set up two pointers to the heads of the lists. The pointer, set on the head of a longer list, will be moved forward | lenA – lenB | positions forward. Then solve the problem as if the lists have the same length.
Example
The length of the list l1 is lenA = 7. The length of the list l2 is lenB = 5.

[image: image2.emf]1234

789

56

l

1

l

2

Set up the pointers a = l1, b = l2. Move the pointer a |7 – 5| = 2 positions forward.

[image: image3.emf]1234

789

56

l

1

l

2

a

b

Step by step move the pointers a and b one position forward until they become equal. Once a = b, the pointers will point to the intersection point.

[image: image4.emf]1234

789

56

l

1

l

2

a

b

Algorithm realization
ListNode *intersection(ListNode *l1, ListNode *l2)

{
Set up the pointers a = l1, b = l2.
 ListNode *a = l1, *b = l2;

 int lenA = 0, lenB = 0;

Find the length lenA of the list l1.
 while (a != NULL)

 {

 lenA++;

 a = a->next;

 }
Find the length lenB of the list l2.
 while (b != NULL)

 {

 lenB++;

 b = b->next;

 }

Move the corresponding pointer | lenA – lenB | positions forward.

 a = l1; b = l2;

 if (lenA > lenB)

 {

 for (int i = 0; i < lenA - lenB; i++)

 a = a->next;

 }

 else
 {

 for (int i = 0; i < lenB - lenA; i++)

 b = b->next;

 }

Move the pointers a and b until they match.
 while (a != b)

 {

 a = a->next;

 b = b->next;

 }
Return the pointer to the intersection point.
 return a;

}

_1659278984.vsd
1

2

4

3

7

8

9

5

6

l1

l2

_1659279061.vsd
1

2

3

4

7

8

9

5

6

l1

l2

a

b

_1659279363.vsd
1

2

3

4

7

8

9

5

6

l1

l2

a

b

_1655041782.vsd
1

2

4

3

7

8

9

5

6

l1

l2

res

