10048. Reverse the graph
A directed graph with n vertices and m edges is given, with vertices numbered from 1 to n. Find the minimum number of edges that need to be reversed so that there exists at least one path from vertex 1 to vertex n.

Input. The first line contains two integers n and m (1 ≤ n, m ≤ 2 * 106) – the number of vertices and edges in the graph. Each of the following m lines contains two integers xi and yi (1 ≤ xi, yi ≤ n), indicating that the i-th directed edge goes from vertex xi to vertex yi .

Output. Print the minimum number of edges that need to be reversed. If it is not possible to obtain a path from vertex 1 to vertex n, print −1.

	Sample input
	Sample output

	7 7

1 2

3 2

3 4

7 4

6 2

5 6

7 5
	2

SOLUTION
breadth first search, 0-1 graph
Algorithm analysis
Сonstruct a 0-1 graph by assigning a weight of 0 to the existing edges and a weight of 1 to their reversed edges. Then, run a breadth-first search. The length of the shortest path from vertex 1 to vertex n will equal the minimum number of edges that need to be reversed.
Example
The graph in the example looks as follows:

[image: image1.emf]1

2

3

45

7

6

1

2

3

45

7

6

0

1

1

0

Algorithm realization
Declare the constant infinity.
#define INF 0x3F3F3F3F

Declare the array of shortest distances dist and the adjacency list of the graph g. For each edge, store its weight (0 or 1) along with the adjacent vertex.
vector<int> dist;

vector<vector<pair<int, int> > > g;

The bfs function implements breadth-first search from the vertex start.
void bfs(int start)

{

 dist = vector<int>(n + 1, INF);

 dist[start] = 0;

 deque<int> q;

 q.push_back(start);

 while (!q.empty())

 {

 int v = q.front(); q.pop_front();

 for (auto edge : g[v])

 {

 int to = edge.first;

 int w = edge.second;

 if (dist[to] > dist[v] + w)

 {

 dist[to] = dist[v] + w;

Depending on the weight of the edge w, add vertex to to the end or the front of the queue.
 if (w == 1)

 q.push_back(to);

 else
 q.push_front(to);

 }

 }

 }

}

The main part of the program. Read the input data.
scanf("%d %d", &n, &m);

g.resize(n + 1);

for (i = 0; i < m; i++)

{

 scanf("%d %d", &a, &b);
Assign a weight of 0 to a directed edge a → b, and a weight of 1 to the reverse edge.
 g[a].push_back({ b, 0 });

 g[b].push_back({ a, 1 });
}

Start the breadth-first search from the vertex 1.
bfs(1);

Print the answer – the shortest distance to vertex n.
if (dist[n] == INF)

 printf("-1\n");

else
 printf("%d\n", dist[n]);

_1668274288.vsd
1

2

3

4

5

7

6

1

2

3

4

5

7

6

0

1

1

0

