10050. Longest path in a tree
An undirected weighted tree is given. Find the longest path in it: identify two vertices such that the distance between them is maximized.
Input. The first line contains the number of vertices in the tree n (2 ≤ n ≤ 105). The following n – 1 lines describe the edges. Each line contains three integers: the numbers of the vertices connected by an edge (vertices are numbered from 1 to n) and the weight w (2 ≤ w ≤ 105) of the edge.
Output. Print the length of the longest path in the tree.
	Sample input
	Sample output

	6

1 2 3

2 3 4

2 6 2

6 4 6

6 5 5
	12

SOLUTION
graphs, breadth first search
Algorithm analysis
The shortest path in a weighted tree can be found using either depth-first search or breadth-first search; using Dijkstra’s algorithm is not necessary in this case.
To find the longest path (the diameter of the tree), proceed as follows:
1. Perform a breadth-first search starting from the first vertex. Identify the vertex v, which has the longest path from the starting vertex.

2. Next, perform a breadth-first search starting from vertex v to find the vertex u, which also has the longest path from v.

3. The path from v to u is the longest path in the tree (the tree’s diameter).
Example
The tree shown in the example has the following structure:

[image: image1.emf]32

4

6

2

1

3

5

5

6

4

· Perform a breadth-first search starting from vertex 1 (left picture). The longest path will be to vertex 4.

· Then, perform a breadth-first search starting from vertex 4 (right picture). The longest path will be to vertex 3, and its length is 12.

[image: image2.emf]32

4

6

2

1

3

5

5

6

4

dist[1] = 0

dist[2] = 3dist[3] = 7

dist[6] = 5

dist[5] = 10

dist[4] = 11

dfs(1)

32

4

6

2

1

3

5

5

6

4

dist[1] = 11

dist[2] = 8dist[3] = 12

dist[6] = 6

dist[5] = 11

dist[4] = 0

dfs(4)

Algorithm implementation
Declare the adjacency list of the graph g.
Declare the array of shortest distances d.
vector<vector<pair<int, int>> > g;

vector<long long> d;

The function bfs performs a breadth-first search starting from vertex v.
int bfs(int v)

{

 deque<int> q;

 q.push_back(v);

 while (!q.empty())

 {

 int v = q.front(); q.pop_front();

 for (auto x : g[v])

 {

 int to = x.first;

 int w = x.second;

 if (d[to] == -1)

 {

 d[to] = d[v] + w;

 q.push_back(to);

 }

 }

 }
Return the number of the vertex to which the distance from vertex v is maximal.
 return max_element(d.begin() + 1, d.begin() + n + 1) - d.begin();

}

The main part of the program. Read the input data. Build the graph.
scanf("%d", &n);

g.resize(n + 1);

for (i = 0; i < n - 1; i++)

{

 scanf("%d %d %lld", &b, &e, &dist);
 g[b].push_back({ e, dist });

 g[e].push_back({ b, dist });

}

Initialize the array of shortest distances.
d = vector<long long>(n + 1, -1);

d[1] = 0;
Perform the first breadth-first search starting from vertex 1. Identify the vertex v that is farthest from vertex 1.
int v = bfs(1);

Re-initialize the array of shortest distances and perform the second breadth-first search starting from vertex v.
d = vector<long long>(n + 1, -1);

d[v] = 0;
v = bfs(v);

Print the result – the length of the longest path.
printf("%lld\n", d[v]);

Algorithm implementation – depth first serch
The adjacency list of the graph is stored in the array g.
To store the shortest distances, declare the array dist.
vector<vector<pair<int, int>> > g;

vector<long long> dist;

The function dfs performs a depth-first search starting from vertex v. Vertex p is the parent of v during the depth-first search.
void dfs(int v, int p = -1)

{
Iterate over all edges adjacent to vertex v.
 for (auto x : g[v])

 {
Consider the edge v → to with weight w.

 int to = x.first;

 int w = x.second;
If to ≠ p, update dist[to] and perform a depth-first search starting from vertex to.

 if (to != p)

 {

 dist[to] = dist[v] + w;

 dfs(to, v);

 }

 }

}

The main part of the program. Read the input data. Build the graph.
scanf("%d", &n);

g.resize(n + 1);

for (i = 0; i < n - 1; i++)

{

 scanf("%d %d %d", &b, &e, &w);

 g[b].push_back({ e, w });

 g[e].push_back({ b, w });

}

Perform a depth-first search starting from vertex 1. Fill the array of shortest distances dist from vertex 1.
dist.assign(n + 1, -1);

dist[1] = 0;

dfs(1);

Find vertex v, which is the farthest from vertex 1.
v = max_element(dist.begin(), dist.end()) - dist.begin();

Perform a second depth-first search starting from vertex v. Fill the array of shortest distances dist from vertex v.
dist.assign(n + 1, -1);

dist[v] = 0;

dfs(v);

The largest value in the array dist is equal to the diameter of the tree.
v = max_element(dist.begin(), dist.end()) - dist.begin();
Print the answer.

printf("%lld\n", dist[v]);

Python implementation
from collections import deque
Read the input data. Store the adjacency list of the graph in g.
Declare a list of shortest distances d.
n = int(input())
g = [[] for _ in range(n + 1)]
d = [-1] * (n + 1)
Construct a graph.

for _ in range(n - 1):

 b, e, dist = map(int, input().split())

 g[b].append((e, dist))

 g[e].append((b, dist))

The function bfs performs a breadth-first search starting from vertex v.
def bfs(v):

 q = deque()

 q.append(v)

 while q:

 v = q.popleft()

 for to, w in g[v]:

 if d[to] == -1:

 d[to] = d[v] + w

 q.append(to)
Return the number of the vertex that is farthest from vertex v.
 return d.index(max(d))

Perform the first breadth-first search from vertex 1. Determine the vertex v that is the farthest from vertex 1.
d[1] = 0
v = bfs(1)
Initialize the array of shortest distances and perform the second breadth-first search from vertex v.
d = [-1] * (n + 1)
d[v] = 0
v = bfs(v)
Print the answer – the length of the longest path.
print(d[v])
_1635252963.vsd
3

2

4

6

2

1

3

5

5

6

4

_1668616438.vsd
3

2

4

6

2

1

3

5

5

6

4

dist[1] = 0

dist[2] = 3

dist[3] = 7

dist[6] = 5

dist[5] = 10

dist[4] = 11

dfs(1)

3

2

4

6

2

1

3

5

5

6

4

dist[1] = 11

dist[2] = 8

dist[3] = 12

dist[6] = 6

dist[5] = 11

dist[4] = 0

dfs(4)

