10112. Tree Balanced
Given a binary tree. Determine if it is height-balanced. A height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differs by more than 1.

Definition of a tree:

//Java
class TreeNode {
 int val;
 TreeNode left;

 TreeNode right;
 TreeNode(int x) {
 val = x;
 left = null;

 right = null;
 }
}
// C++
class TreeNode
{

public:

 int val;

 TreeNode *left;

 TreeNode *right;

 TreeNode(int x) : val(x), left(NULL), right(NULL) {}

};

Implement function isBalanced that returns true if tree is balanced and false otherwise.

// Java
int isBalanced(TreeNode tree)
// C++
int isBalanced(TreeNode *tree)

Example

[image: image1.emf]7

5 13

9 17

Function isBalanced returns true because tree is balanced.
SOLUTION
binary tree
Algorithm analysis
Let Height be a function that returns the height of the tree (the number of vertices from the root to the farthest leaf). However, if the tree is not balanced, then function Height returns -1.

For each vertex root you should calculate:
· the height of the left subtree Left;

· the height of the right subtree Right;

[image: image2.emf]root

Left

Right

If either Left or Right is -1, then the tree root is not balanced. The tree root will also be not balanced if | Left – Right | > 1.

The original tree root will be balanced if its height is not -1.

Algorithm realization
bool isBalanced(TreeNode* root)

{

 return (Height(root) != -1);

}

If tree root is not balanced, function Height returns -1.

If tree root is balanced, function Height returns the height of the tree (the number of vertices from the root to the farthest leaf).
int Height(TreeNode* root)

{
If root = NULL, the height of the tree is 0.

 if (root == NULL) return 0;
Find the height of the left Left and right Right subtree.

 int Left = Height(root->left);

 int Right = Height(root->right);
The tree is not balanced, if one of the following conditions is true:

· left subtree is not balanced (Left = -1);

· right subtree is not balanced (Right = -1);

· the absolute value of difference of subtrees heights is greater than 1.
 if (Left == -1 || Right == -1 || abs(Left - Right) > 1) return -1;

 return max(Left, Right) + 1;

}

Java realization
boolean isBalanced(TreeNode tree)
{
 return (Height(tree) != -1);
}
int Height(TreeNode tree)
{
 if (tree == null) return 0;
 int Left = Height(tree.left);
 int Right = Height(tree.right);
 if (Left == -1 || Right == -1 || Math.abs(Left - Right) > 1)
 return -1;
 return Math.max(Left, Right) + 1;
}
_1694709658.vsd
7

5

13

9

17

_1694710834.vsd
root

Left

Right

