10119. Swapity swap
Farmer John’s n cows are standing in a line. The i-th cow from the left has label i (1 ≤ i ≤ n). Farmer John has come up with a new morning exercise routine for the cows. He tells them to repeat the following two-step process exactly k times:

· The sequence of cows currently in positions a1, …, a2 from the left reverse their order. Then, the sequence of cows currently in positions b1, ​…, b2 from the left reverse their order.

After the cows have repeated this process exactly k times, output the label of the i-th cow from the left for each i (1 ≤ i ≤ n).

Input. The first line of contains n (1 ≤ n ≤ 100) and k (1 ≤ k ≤ 109). The second line contains a1 and a2 (1 ≤ a1 ​< a2 ​≤ n), and the third line contains b1 and b2 (1 ≤ b1​ < b2 ≤ n).

Output. On the i-th line of output, print the label of the i-th cow from the left at the end of the exercise routine.

	Sample input
	Sample output

	7 2

2 5

3 7
	1

2

4

3

5

7

6

SOLUTION
simulation
Algorithm analysis
If we simulate the process of rearranging cows, we will obtain Time Limit, since the number of repetitions of the two-step process k ≤ 109 is too large.

Let’s place the cows in order at positions from 1 to n. For each cow number i (1 ≤ i ≤ n), we find the position in which it will end up after k iterations. For each cow, we find the number of iterations p, after which it will again occupy its original place. This number p ≤ n ≤ 100 is not large. Then this cow will take the original place after 2p, 3p, 4p ... iterations. After k – (k % p) iterations, the considered cow will again be in its original place (since the specified number is divisible by p). It remains to perform another k % p iterations to find the final position of the cow.

Example
The initial order of the cows is:

[image: image1.emf]1 2 3 4 5 6 7

Step 1

[image: image2.emf]1 2 3 4 5 6 7

[2 … 5]

1 5 4 3 2 6 7

1 5 4 3 2 6 7

[3 … 7]

1 5 7 6 2 3 4

Step 2

[image: image3.emf][2 … 5]

1 2 6 7 5 3 4

[3 … 7]

1 5 7 6 2 3 4 1 2 6 7 5 3 4

1 2 4 3 5 7 6

Algorithm realization
Declare an array pos. If cow number i after k iterations takes position cur, then we assign pos[cur] = i.

int pos[101];

Let some cow be at position x. The function nex(x) returns the position of this cow after the two-step process. If the cow is at position x, that belongs to the segment [a1; a2], then after reversing it the cow will be moved to position a1 + a2 – x.

int nex(int x)

{

 if (a1 <= x && x <= a2) x = a1 + a2 - x;

 if (b1 <= x && x <= b2) x = b1 + b2 - x;

 return x;

}

The main part of the program. Read the input data.

scanf("%d %d", &n, &k);

scanf("%d %d", &a1, &a2);

scanf("%d %d", &b1, &b2);

For each cow number i, we find its position after completing the process of all exchanges.

for (i = 1; i <= n; i++)

{
In the variable p we find the number of iterations (one iteration is performing the two-step process once) after which the i-th cow will be in its place again. The variable cur contains the current position of the cow.

 p = 1; cur = nex(i);
Execute the loop until the i-th cow returns to its starting place – position number i.

 while (cur != i)

 {

 p++;

 cur = nex(cur);

 }

After k – (k % p) iterations, the i-th cow will again be in the i-th place. Execute another k % p iterations to find the final location of the i-th cow.

 kk = k % p;

 for (j = 0; j < kk; j++)

 cur = nex(cur);

Cow number i will take position cur after k iterations.

 pos[cur] = i;

}

Print the final location of the cows after all exchanges are completed.

for (i = 1; i <= n; i++)

 printf("%d\n", pos[i]);

Algorithm realization – Time Limit
In the case of naive simulation of operations, due to the limit k ≤ 109, we get Time Limit.

#include <cstdio>
#include <algorithm>
using namespace std;

int i, n, k, a1, a2, b1, b2;

int m[101];

int main(void)

{

 scanf("%d %d", &n, &k);

 scanf("%d %d", &a1, &a2);

 scanf("%d %d", &b1, &b2);

 for (i = 1; i <= n; i++)

 m[i] = i;

 for (i = 0; i < k; i++)

 {

 reverse(m + a1, m + a2 + 1);

 reverse(m + b1, m + b2 + 1);

 }

 for (i = 1; i <= n; i++)

 printf("%d\n", m[i]);

 return 0;

}
_1756647331.vsd
1

2

3

4

5

6

7

[2 … 5]

1

5

4

3

2

6

7

1

5

4

3

2

6

7

[3 … 7]

1

5

7

6

2

3

4

_1756647575.vsd
1

5

7

6

2

3

4

[2 … 5]

1

2

6

7

5

3

4

1

2

6

7

5

3

4

[3 … 7]

1

2

4

3

5

7

6

_1756647031.vsd
1

2

3

4

5

6

7

