10157. Transitive closure
Find the transitive closure of the directed graph.
Input. The directed graph is given with the list of edges. The first line contains the number of vertices n (1 ≤ n ≤ 100). Each of the next lines contains two vertices a and b (1 ≤ a, b ≤ n) describing the directed edge from a to b.
Output. Print the adjacency matrix of the transitive closure of the directed graph.
	Sample input
	Sample output

	4

4 1

1 2

3 4
	0 1 0 0

0 0 0 0

1 1 0 1

1 1 0 0

SOLUTION
transitive closure of the graph
Algorithm analysis
In the problem you must find the transitive closure of the graph. If graph contains the edges i → k and k → j, the edge i → j should be added.

[image: image1.emf]k j

i

Example
Consider the graph at the left. Its transitive closure is given at the right.

[image: image2.emf]1 2

4 3

1 2

4 3

In the transitive closure the next edges will be added: 3 → 1 (there is a path 3 → 4 → 1), 3 → 2 (path 3 → 4 → 1 → 2) and 4 → 2 (path 4 → 1 → 2).

Algorithm realization
Declare adjacency matrix g.
#define MAX 101

bool g[MAX][MAX];

Read the input data. Create the graph.
scanf("%d", &n);

while (scanf("%d %d", &a, &b) == 2)

 g[a][b] = true;

Start the transitive closure algorithm. If there are edges i → k and k → j, then create an edge i → j.
for (k = 1; k <= n; k++)

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

 if (g[i][k] && g[k][j]) g[i][j] = true;

Print the adjacency matrix of transitive closure of the graph.

for (i = 1; i <= n; i++)

{

 for (j = 1; j <= n; j++)

 printf("%d ", g[i][j]);

 printf("\n");

}

Java realization
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);

 int n = con.nextInt();
 boolean g[][] = new boolean[n+1][n+1];
 while (con.hasNextInt())
 {
 int a = con.nextInt();
 int b = con.nextInt();
 g[a][b] = true;
 }
 for (int k = 1; k <= n; k++)
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 if (g[i][k] && g[k][j]) g[i][j] = true;
 for (int i = 1; i <= n; i++)
 {
 for (int j = 1; j <= n; j++)
 {
 int val = (g[i][j]) ? 1 : 0;
 System.out.print(val + " ");
 }
 System.out.println();
 }
 con.close();
 }
}
_1659441322.vsd
k

j

i

_1659435096.vsd
1

2

4

3

1

2

4

3

