10158. Find the centroid
Find any centroid in the tree.

Input. The first line contains one integer n (1 ≤ n ≤ 2 * 105), representing the number of vertices. Each of the following n – 1 lines contains two integers vi and ui ​(1 ≤ vi, ui ≤ n), representing vertices connected by an edge.

It is guaranteed that the graph is a tree.

Output. Print the number of a vertex that is a centroid. If there are multiple centroids, print any one of them.

	Sample input
	Sample output

	12

1 3

2 3

3 4

4 5

4 6

6 7

6 10

10 11

10 12

6 8

8 9
	6

SOLUTION
dfs - centroid
Algorithm analysis
Consider a tree with n vertices.
A centroid of a tree is a vertex whose removal results in splitting the tree into connected components, each containing no more than n / 2 vertices. The task is to find all centroids of the tree.

Let’s consider examples of trees and their centroids (marked in green).

[image: image1.emf]4

2 5

1 3

1

2

3

4 1

2 3

Run a depth-first search starting from vertex v, which will calculate the number of vertices in the subtree rooted at vertex v and store this value in sub[v]. For the given examples, we will indicate the corresponding value of sub[v] next to each vertex v. In all examples, the depth-first search starts from vertex 1.

[image: image2.emf]4

2 5

1 3

1

2

3

4 1

2 3

1

2

3

4

1 1

5 1

1

3

4

2

If vertex v has children to1, to2, …, tok , then
sub[v] = 1 + sub[to1] + sub[to2] + … + sub[tok]
Vertex v is a centroid of the tree if and only if:

· for each of its children to, it holds that sub[to] ≤ n / 2;
· if we remove the subtree rooted at v from the tree, the resulting tree contains no more than n / 2 vertices: n – sub[v] ≤ n / 2;
For example, in the tree from the right with n = 5 vertices, vertex 2 is a centroid because:
· sub[4] = 2 ≤ n / 2;
· sub[3] = 1 ≤ n / 2;
· n – sub[2] = 5 – 4 = 1 ≤ n / 2;
Example
Let’s consider the tree from the example. Vertex 6 is a centroid.

[image: image3.emf]6

7 8

9

4 10

3

5

1

2

12

11

Algorithm realization
We’ll store the graph in the adjacency list g.

vector<vector<int> > g;

The dfs function returns the number of vertices in the subtree rooted at vertex v and saves this value in sub[v].

int dfs(int v, int p = -1)

{

 sub[v] = 1;

 for (int to : g[v])

 if (to != p) sub[v] += dfs(to, v);

 return sub[v];

}

The centroid function performs a depth-first search, finds the centroids, and stores them in the centr array.

void centroid(int v, int p = -1)

{
Set flag = 1 if vertex v is a centroid.

 int flag = 1;
Iterate through the vertices to, adjacent to v. Consider an edge v → to.
 for (int to : g[v])

 if (to != p)

 {

If for a child to it holds that sub[to] > n / 2, then v is not a centroid.

 if (sub[to] > n / 2) flag = 0;

If for a child to it holds that sub[to] < n / 2, then the subtree rooted at to does not contain centroids. It makes sense to continue the search in the child to only if sub[to] ≥ n / 2.

 if (sub[to] >= n / 2) centroid(to, v);

 }
The tree without the subtree rooted at v contains n – sub[v] vertices. If it contains more than n / 2 vertices, then v is not a centroid.

 if (n - sub[v] > n / 2) flag = 0;
If vertex v satisfies all the conditions of a centroid, add it to the centr array.

 if (flag) centr.push_back(v);

}

The main part of the program. Read the input data and initialize the arrays.

scanf("%d", &n);

g.resize(n + 1);

sub.resize(n + 1);
Read the input graph.

for (i = 0; i < n - 1; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Run a depth-first search and find the centroids of the tree.
dfs(1);

centroid(1);
Print one of the centroids.

printf("%d\n", centr[0]);
Algorithm realization – second solution
Let’s run a depth-first search dfs(v), that will compute the following values for each vertex v:

· sub[v] contains the number of vertices in the subtree with vertex v.

· f[v] contains the maximum size of a subtree among all subtrees of vertex v, including the subtree containing the parent vertex of v.

Then, the centroid will be the vertex v with the smallest value of f[v]. There may be either one or two such vertices in the tree.

[image: image4.emf]6

7 8

9

4 10

3

5

1

2

12

11

11

11

11

11

11

11

11

10

9

5

7

9

6

7 8

9

4 10

3

5

1

2

12

11

5

Vertex v = 6 is connected to 4 subtrees, with sizes 1, 2, 3, and 5 respectively. The value f[6] = 5 contains the maximum size of a subtree.

At the same time, the smallest value in the array f is f[6] = 5. Therefore, vertex 6 is the centroid.

Let’s consider the labeling of a tree with two centroids.

[image: image5.emf]1

2 3

6

5

4

5 5 5

3 4

3

1

2 3

6

5

4

3

Two vertices have the smallest value in the array f: f[1] = 3 and f[2] = 3.
void dfs(int v, int p = -1)

{

 sub[v] = 1;

 f[v] = 0;

 for (int to : g[v])

 if (to != p)

 {

 dfs(to, v);

 sub[v] += sub[to];

 f[v] = max(f[v], sub[to]);

 }

 f[v] = max(f[v], n - sub[v]);

 if ((root == 0) || (f[v] < f[root])) root = v;

}

The main part of the program. Read the input data and initialize the arrays.

scanf("%d", &n);

g.resize(n + 1);

f.resize(n + 1);

sub.resize(n + 1);

for (i = 0; i < n - 1; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Run a depth-first search and print one of the centroids root of the tree.

root = 0;

dfs(1);

printf("%d\n", root);

Python realization
Increase the size of the stack.

import sys

sys.setrecursionlimit(300000)

The dfs function returns the number of vertices in the subtree rooted at vertex v and saves this value in sub[v].

def dfs(v, p = -1):

 sub[v] = 1

 for to in g[v]:

 if to != p:

 sub[v] += dfs(to, v)

 return sub[v]

The centroid function performs a depth-first search, finds the centroids, and stores them in the centr array.

def find_centroid(v, p = -1):
Set flag = True if vertex v is a centroid.

 flag = True
Iterate through the vertices to, adjacent to v. Consider an edge v → to.
 for to in g[v]:

 if to == p: continue
If for a child to it holds that sub[to] > n / 2, then v is not a centroid.

 if sub[to] > n // 2:

 flag = False
If for a child to it holds that sub[to] < n / 2, then the subtree rooted at to does not contain centroids. It makes sense to continue the search in the child to only if sub[to] ≥ n / 2.

 if sub[to] >= n // 2:

 find_centroid(to, v)
The tree without the subtree rooted at v contains n – sub[v] vertices. If it contains more than n / 2 vertices, then v is not a centroid.

 if n - sub[v] > n // 2:

 flag = False
If vertex v satisfies all the conditions of a centroid, add it to the centr array.

 if flag: centr.append(v)

The main part of the program. Read the input data and initialize the arrays.

n = int(input())
g = [[] for _ in range(n + 1)]

sub = [0] * (n + 1)

centr = []

Read the input graph.

for i in range(n - 1):

 a, b = map(int, input().split())

 g[a].append(b)

 g[b].append(a)

Run a depth-first search and find the centroids of the tree.

dfs(1)

find_centroid(1)
Print one of the centroids.

print(centr[0])

Python realization – second solution
Increase the size of the stack.

import sys
sys.setrecursionlimit(200000)
Let’s run a depth-first search dfs(v), that will compute the following values for each vertex v:

· sub[v] contains the number of vertices in the subtree with vertex v.

· f[v] contains the maximum size of a subtree among all subtrees of vertex v, including the subtree containing the parent vertex of v.

Then, the centroid will be the vertex v with the smallest value of f[v]. There may be either one or two such vertices in the tree.

def dfs(v, p=-1):
 global root
 sub[v] = 1
 f[v] = 0
 for to in g[v]:
 if to != p:
 dfs(to, v)
 sub[v] += sub[to]
 f[v] = max(f[v], sub[to])
 f[v] = max(f[v], n - sub[v])
 if root == 0 or f[v] < f[root]:
 root = v
The main part of the program. Read the input data and initialize the arrays.

n = int(input())
g = [[] for _ in range(n + 1)]
f = [0] * (n + 1)
sub = [0] * (n + 1)
for _ in range(n - 1):
 a, b = map(int, input().split())
 g[a].append(b)
 g[b].append(a)
Run a depth-first search and print one of the centroids root of the tree.

root = 0
dfs(1)
print(root)
_1692869439.vsd
1

3

1

2

4

2

5

3

4

1

2

3

1

2

3

4

1

1

5

1

1

3

4

2

_1778167544.vsd

_1778181270.vsd
6

7

8

9

4

10

3

5

1

2

12

11

11

11

11

11

11

11

11

10

9

5

7

9

_1744196403.vsd
6

7

8

9

4

10

3

5

1

2

12

11

_1692868608.vsd
1

3

1

2

4

2

5

3

4

1

2

3

