10172. Vertex
Write a program that searches a directed graph for vertices which are inaccessible from a given starting vertex.

A directed graph is represented by n vertices, numbered consecutively 1, ..., n, and a series of edges p → q which connect the pair of nodes p and q in one direction only.

A vertex r is reachable from a vertex p if there is an edge p → r, or if there exists some vertex q for which q is reachable from p and r is reachable from q.

A vertex r is inaccessible from a vertex p if r is not reachable from p.

Input. Consists of several directed graphs and starting nodes. For each graph, there is first one line containing a single integer n (1 ≤ n ≤ 100). This is the number of vertices in the graph.

Following, there will be a group of lines, each containing a set of integers. The group is terminated by a line which contains only the integer 0. Each set represent a collection of edges. The first integer in the set i is the starting vertex, while the next group of integers j, ..., k, define the series of edges i → j, ..., i → k, and the last integer on the line is always 0. Each possible start vertex i (1 ≤ i ≤ n) will appear once or not at all. Following each graph definition, there will be one line containing a list of integers. The first integer on the line will specify how many integers follow. Each of the following integers represents a start vertex to be investigated by your program. The next graph then follows. If there are no more graphs, the next line will contain only the integer 0.

Output. For each start vertex to be investigated, your program should identify all the vertices which are inaccessible from the given start vertex. Each list should appear on one line, beginning with the count of inaccessible vertices and followed by the inaccessible vertex numbers.

	Sample input
	Sample output

	3

1 2 0

2 2 0

3 1 2 0

0

2 1 2

0
	2 1 3

2 1 3

SOLUTION
graphs – Floyd - Warshall
Algorithm analysis
Construct the adjacency matrix of the graph c. Run the Floyd-Warshall algorithm to find all shortest paths in a graph. For vertex i, those vertices j for which c[i][j] = will be unreachable after the Floyd – Warshall algorithm is executed. The complexity of the algorithm is O(n3).
Example
Consider the given sample.

[image: image1.emf]1 2

3

The example explores two vertices: the first and the second. It is impossible to get to the first and the third vertices from the first and the second one.
Algorithm realization
The input graph is stored in an adjacency matrix with size MAX = 101.

#define MAX 101

int c[MAX][MAX];

Floyd – Warshall algorithm implementation.
void floyd(void)

{

 for(int k = 1; k <= n; k++)

 for(int i = 1; i <= n; i++)

 for(int j = 1; j <= n; j++)

 if (c[i][k] + c[k][j] < c[i][j])

 c[i][j] = c[i][k] + c[k][j];

}

The main part of the program. Read the graph and build an adjacency matrix c. Initially, set all edges to be equal to infinity (we’ll choose the hexadecimal value 3F3F3F3F as infinity). Since the vertices of the graph are numbered from one by the problem statement, the zero row and column of the matrix c will not be used.
while(scanf("%d",&n), n > 0)

{

 memset(c,0x3F,sizeof(c));

 while(scanf("%d",&a) ,a)

 while(scanf("%d", &b), b) c[a][b] = 1;

Run the Floyd-Warshall algorithm on the adjacency matrix c.
 floyd();

Read the number of vertices i under investigation for a given graph, and for each investigated vertex a, count the number of vertices b unreachable from a (for which c[a][b] = ).
 scanf("%d",&i);

 while(i--)

 {

 scanf("%d",&a);
Count the number of vertices unreachable from a.
 for(count = 0, b = 1; b <= n; b++)

 if (c[a][b] == 0x3F3F3F3F) count++;

Print the number of unreachable vertices from a and the vertices themselves in ascending order of numbers.
 printf("%d",count);

 for(b = 1; b <= n; b++)

 if (c[a][b] == 0x3F3F3F3F) printf(" %d",b);

 printf("\n");

 }

}

Java realization
import java.util.*;
public class Main
{
 static int c[][];
 static int n;
 static void floyd()
 {
 for(int k = 1; k <= n; k++)
 for(int i = 1; i <= n; i++)
 for(int j = 1; j <= n; j++)
 if (c[i][k] + c[k][j] < c[i][j])
 c[i][j] = c[i][k] + c[k][j];
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 while(true)
 {
 n = con.nextInt();
 if (n == 0) break;
 c = new int[n+1][n+1];
 for(int i = 0; i <= n; i++)

Arrays.fill(c[i],Integer.MAX_VALUE / 2);
 while(true)
 {
 int a = con.nextInt();
 if (a == 0) break;
 while(true)
 {
 int b = con.nextInt();
 if (b == 0) break;
 c[a][b] = 1;
 }
 }
 floyd();
 int i = con.nextInt();
 while(i-- > 0)
 {
 int a = con.nextInt();
 int count = 0;
 for(int b = 1; b <= n; b++)
 if (c[a][b] == Integer.MAX_VALUE / 2) count++;
 System.out.print(count);
 for(int b = 1; b <= n; b++)
 if (c[a][b] == Integer.MAX_VALUE / 2) System.out.print(" " + b);
 System.out.println();
 }
 }
 con.close();
 }
}
_1659350844.vsd
1

2

3

