10203. Arctic network
The Department of National Defense (DND) wishes to connect several northern outposts by a wireless network. Two different communication technologies are to be used in establishing the network: every outpost will have a radio transceiver and some outposts will in addition have a satellite channel.

Any two outposts with a satellite channel can communicate via the satellite, regardless of their location. Otherwise, two outposts can communicate by radio only if the distance between them does not exceed d, which depends of the power of the transceivers. Higher power yields higher d but costs more. Due to purchasing and maintenance considerations, the transceivers at the outposts must be identical; that is, the value of d is the same for every pair of outposts.

Your job is to determine the minimum d required for the transceivers. There must be at least one communication path (direct or indirect) between every pair of outposts.

Input. The first line contains the number n of test cases. The first line of each test case contains the number of satellite channels s (1 ≤ s ≤ 100) and the number of outposts p (s < p ≤ 500). p lines follow, giving the (x, y) coordinates of each outpost in km (coordinates are integers between 0 and 10000).

Output. For each case print the minimum d required to connect the network. Output should be specified to 2 decimal points.
	Sample input
	Sample output

	1

2 4

1 0

3 0

6 0

7 2
	2.24

SOLUTION
graphs – Prim algorithm
Algorithm analysis
Start Prim’s algorithm. Construct an array dist, where dist[i] stores the length of the shortest edge from MST that runs to the vertex i. That is, MST consists of these edges. Moreover, dist[0] = 0, since we start the algorithm from the vertex 0.
At the end of Prim’s algorithm, sort the dist array. The most distant outposts should be connected by satellite channels. They should be placed in those s outposts that connect the longest edges from dist (s – 1 edges connect s outposts). Therefore, the desired value of d will be the length of the edge that is the s-th from the end of dist.
Example
Consider the graph given in a sample.

[image: image1.emf]4257

2

1

23

2.24

SS

Put two satellite channels at points (3; 0) and (6; 0). Thus, the outposts in these coordinates are connected via satellite. Find the largest one among the remaining edges of MST. This will be the edge connecting the points (6; 0) and (7; 2), its length is 2.24.
Algorithm realization
Declare global arrays. Store the coordinates of the outposts in (x[i], y[i]). used[i] = 1, if vertex i is included in MST.
#define MAX 501

#define INF 0x3F3F3F3F

int x[MAX], y[MAX];

int used[MAX], dist[MAX];

The function dist2 computes the squared distance between outposts i and j.

int dist2(int i, int j)

{

 return (x[j] - x[i])*(x[j] - x[i]) + (y[j] - y[i])*(y[j] - y[i]);

}

Function Prim implements the Prim’s algorithm.
void Prim(void)

{
Initialize the arrays.
 memset(dist, 0x3F, sizeof(dist));

 memset(used, 0, sizeof(used));

Start building the MST from the vertex 0. Initialize dist[0] = 0, used[0] = 1.
 int i, j, cur = 0;

 dist[cur] = 0;

 used[cur] = 1;
Make n – 1 iterations. At each iteration, add one vertex to MST (so n – 1 vertices should be added to MST).
 for (i = 1; i < n; i++)

 {
The current vertex is cur. Iterate over the edges (cur, j) and recalculate the value of dist[j]. Thus dist[j] stores the current shortest distance from vertex j to the current MST.
 for (j = 0; j < n; j++)

 if (!used[j] && (dist2(cur, j) < dist[j]))

 dist[j] = dist2(cur, j);

We are looking for the shortest edge that will be included in MST. To do this, look for the smallest dist[j] such that the vertex j does not yet belong to MST (used[j] = 0). The number of the vertex with the smallest dist[j] is stored into cur (it becomes the current one).
 int min = INF;

 for (j = 0; j < n; j++)

 if (!used[j] && (dist[j] < min))

 {

 min = dist[j];

 cur = j;

 }
Vertex cur is included to MST.
 used[cur] = 1;

 }

}

The main part of the program. Process tests tests.
scanf("%d", &tests);

while (tests--)

{
Read the input data.
 scanf("%d %d", &s, &n);

 for (i = 0; i < n; i++)

 scanf("%d %d", &x[i], &y[i]);

Run the Prim’s algorithm.
 Prim();

Sort the array dist.

 sort(dist, dist + n);
Print the answer.
 printf("%.2lf\n", sqrt(dist[n - s]));

}

Java realization
import java.util.*;
public class Main
{
 static int n;
 static int x[], y[];
 static int used[], dist[];
 static int dist2(int i, int j)
 {
 return (x[j] - x[i])*(x[j] - x[i]) + (y[j] - y[i])*(y[j] - y[i]);
 }
 static void Prim()
 {
 dist = new int[n];
 Arrays.fill(dist, Integer.MAX_VALUE);
 used = new int[n];
 int i, j, cur = 0;
 dist[cur] = 0;
 used[cur] = 1;
 for (i = 1; i < n; i++)
 {
 for (j = 0; j < n; j++)
 if (used[j] == 0 && dist2(cur, j) < dist[j])
 dist[j] = dist2(cur, j);
 int min = Integer.MAX_VALUE;
 for (j = 0; j < n; j++)
 if (used[j] == 0 && dist[j] < min)
 {
 min = dist[j];
 cur = j;
 }
 used[cur] = 1;
 }
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int tests = con.nextInt();
 while (tests-- > 0)
 {
 int s = con.nextInt();
 n = con.nextInt();
 x = new int[n];
 y = new int[n];
 for (int i = 0; i < n; i++)
 {

x[i] = con.nextInt();

y[i] = con.nextInt();
 }
 Prim();
 Arrays.sort(dist);
 System.out.println(Math.sqrt(dist[n - s]));
 }
 con.close();
 }
}
_1666773303.vsd
4

2

5

7

2

1

2

3

2.24

S

S

