10205. Highways
The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to n and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exactly two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input. The first line contains the number of test cases. Then there’s a blank line and the datasets separated by a blank line. Each test case consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the test case contains the number of towns n (1 ≤ n ≤ 750). Each of the next n lines contains two integers xi and yi – the coordinates of the i-th town (for i from 1 to n). The absolute value of coordinates is no more than 10000. Every town has a unique location.

The next line contains the number of existing highways m (0 ≤ m ≤ 1000). Each of the next m lines contains a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output. For each test case print a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then print the sentence “No new highways need”.

Print a blank line between test cases.

	Sample input
	Sample output

	1

7

3 3

6 2

8 1

6 0

2 0

0 1

0 3

3

4 2

5 2

6 7
	1 7

6 5

2 3

SOLUTION
graphs – Prim algorithm
Algorithm analysis
Let us single out the connected components by the already existing connections, using the system of disjoint sets. Run Prim’s algorithm. If an edge that connects vertices from one connected component is relaxed, consider its length equal to zero. While adding an edge to MST, unite the vertices at its ends into one set.
Example
Consider the sample given. Already built highways are marked in blue. Highways to be built are given in red.

[image: image1.emf]42

2

57

3

2

1

1

4

3

831

5

6

6

7

Algorithm realization
Declare the arrays. Store the city coordinates in (x[i], y[i]). The value used[i] = 1, if vertex i is included in MST. The dist[i] value stores the smallest distance from a vertex not yet included in MST to the current MST. The prev[i] value contains a vertex from MST, to which it would be better to connect vertex i. When the vertex i is included to MST, then the edge (prev[i], i) belongs to MST.
#define MAX 751

#define INF 0x3F3F3F3F

int mas[MAX], x[MAX], y[MAX], used[MAX], dist[MAX], prev[MAX];

Function Repr returns the representative of the vertex n.
int Repr(int n)

{

 if (n == mas[n]) return n;

 return mas[n] = Repr(mas[n]);

}

Function Union unites the sets that contain vertices x and y.
int Union(int x, int y)

{

 x = Repr(x); y = Repr(y);

 mas[x] = y;

 return (x != y);

}

The function dist2 computes the squared distance between cities i and j.
int dist2(int i, int j)

{

 return (x[j] - x[i])*(x[j] - x[i]) + (y[j] - y[i])*(y[j] - y[i]);

}

Function Prim implements the Prim’s algorithm

void Prim(void)

{
Initialize the arrays.
 memset(dist, 0x3F, sizeof(dist));

 memset(used, 0, sizeof(used));

 memset(prev, -1, sizeof(prev));

Start to construct the MST from the vertex 1. Initialize dist[1] = 0, used[1] = 1.

 int i, j, cur = 1;

 dist[cur] = 0;

 used[cur] = 1;
Make n – 1 iterations. At each iteration, add one vertex to MST (so n – 1 vertices should be added to MST).

 for (i = 1; i < n; i++)

 {
The current vertex is cur. Iterate over the edges (cur, j) and recalculate the value of dist[j]. Thus dist[j] stores the current shortest distance from vertex j to the current MST.

 for (j = 1; j <= n; j++)

 {

 if (!used[j])

 {
If the vertices cur and j lie in the same connected component, then the distance between them set to 0 (dist[j] = 0).
 if (Repr(cur) == Repr(j))

 {

 dist[j] = 0;

 prev[j] = cur;

 }

 else if (dist2(cur, j) < dist[j])

 {

 dist[j] = dist2(cur, j);

 prev[j] = cur;

 }

 }

 }

Find the shortest edge that will be included in MST. To do this, look for the smallest dist[j] such that the vertex j does not yet belong to MST (used[j] = 0). The number of the vertex with the smallest dist[j] is stored into cur (it becomes the current one).

 int min = INF;

 cur = -1;

 for (j = 1; j <= n; j++)

 if (!used[j] && (dist[j] < min))

 {

 min = dist[j];

 cur = j;

 }

Vertex cur is included to MST. The edge (prev[cur], cur) is added to MST.

 used[cur] = 1;
If the vertices cur and prev[cur] are not connected with roads yet, construct a road (prev[cur], cur). Unite the sets that contain vertices cur and prev[cur].
 if (Repr(cur) != Repr(prev[cur]))

 {

 printf("%d %d\n", prev[cur], cur);

 Union(prev[cur], cur);

 }

 }

}

The main part of the program. Process tests tests.
scanf("%d", &tests);

while (tests--)

{
Read the input data.
 scanf("%d", &n);

 for (i = 1; i <= n; i++)

 scanf("%d %d", &x[i], &y[i]);

Initialze the system of disjoint sets.
 for (i = 1; i <= n; i++) mas[i] = i;

 scanf("%d", &m);
For each edge (u, v) unite the sets that contain vertices u and v. In the variable cnt compute the number of edges used for their union.
 cnt = 0;

 for (i = 0; i < m; i++)

 {

 scanf("%d %d", &u, &v);

 cnt += Union(u, v);

 }

If cnt = n – 1, then the initially existing highways form a connected graph. There is no need to build new highways.
 if (cnt == n - 1)

 puts("No new highways need");

 else
 Prim();

Print the empty line between the tests.
 if (tests) puts("");

}
_1666953130.vsd
4

6

2

2

5

7

3

7

2

1

3

8

1

4

5

3

1

6

