10242. Knight route
Given a n * n board with the Knight placed in the first row and first column of an empty board. Moving according to the rules of chess knight, visit each square exactly once.

Print the order of each the cell in which they are visited.

Input. The size of the chess board n (1 ≤ n ≤ 8).
Output. Print the state of the board with knight moves. If the problem has no solution, print “Solution does not exist”.

	Sample input 1
	Sample output 1

	5
	1 6 15 10 21

14 9 20 5 16

19 2 7 22 11

 8 13 24 17 4

25 18 3 12 23

	
	

	Sample input 2
	Sample output 2

	2
	Solution does not exist

SOLUTION
backtracking
Algorithm analysis
The knight’s moves are numbered from 1 to n2. Declare a two dimensional array sol, where we’ll generate knight moves. Start from the point (0, 0), for which we set sol[0][0] = 1 (the first move of the knight). Next, iterate the positions where the chess knight can go. If there is a position where the knight can go, then make a move there and continue the search from this position. If it is impossible to make a move from the current position, then make a move backward (backtracking) and continue the search. The search ends when all numbers from 1 to n2 have been placed on the chessboard.
Algorithm realization
The maximum size of the chessboard is 8. In the sol array generate the moves of the knight.
#define MAX 9
int sol[MAX][MAX];

The arrays xMove and yMove define the possible moves of the knight. If the knight is in the cell (x, y), then with one move it can go to the cell (x + xMove[i], y + yMove[i]), where 0 ≤ i ≤ 7.
int xMove[8] = { 2, 1, -1, -2, -2, -1, 1, 2 };

int yMove[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };

The function isSafe checks if cell (x, y) is free. That is, if the knight can go to cell (x, y). The answer is affirmative if the x and y coordinates are within the chessboard (the cells are numbered from 0 to n – 1) and the knight has not entered the cell (x, y) yet (sol[x][y] = -1).
int isSafe(int x, int y)

{

 return (x >= 0 && x < n && y >= 0 && y < n && sol[x][y] == -1);

}

The function printSolution prints a chessboard with knight moves.
void printSolution(void)

{

 for (int x = 0; x < n; x++)

 {

 for (int y = 0; y < n; y++)

 printf("%2d ", sol[x][y]);

 printf("\n");

 }

}

The function solveKTUtil makes a move number movei to the cell (x, y). Continue the search with backtracking from the cell (x, y) until n2 moves are made.
int solveKTUtil(int x, int y, int movei)

{
The move number movei is made to the cell (x, y).
 sol[x][y] = movei;
If n2 moves are made, then finish the search.
 if (movei == n * n) return 1;

Iterate through the cells where you can go from (x, y). From the cell (x, y) in one move the knight can go to (x + xMove[i], y + yMove[i]), where 0 ≤ i ≤ 7.
 for (int k = 0; k < 8; k++)

 {

 int next_x = x + xMove[k];

 int next_y = y + yMove[k];
If the knight did not visit the cell (next_x, next_y) yet, then recursively run the search from it. In (next_x, next_y) the move number movei + 1 is performed.
 if (isSafe(next_x, next_y))

 {

 if (solveKTUtil(next_x, next_y, movei + 1) == 1) return 1;

 }

 }
If all the moves of the knight are iterated, but it was not possible to make a move to the free square, make a move backward (backtracking), free the square (x, y) (sol[x][y] = -1).
 sol[x][y] = -1;

 return 0;

}

The function solve builds a knight’s route using backtracking. The function returns 0 if the route cannot be built. If there are several solutions, the function generates one of them.
int solve()

{
Initialize the resulting matrix sol.
 for (int x = 0; x < n; x++)

 for (int y = 0; y < n; y++)

 sol[x][y] = -1;

The chess knight starts its path from the upper left corner. The function solveKTUtil starts path generation from cell (0, 0). The cell (0, 0) contains the number 1.
 if (solveKTUtil(0, 0, 1) == 0)

 {

 printf("Solution does not exist");

 return 0;

 }

 else
 printSolution();

 return 1;

}

The main part of the program. Read the size of the chessboard n. Run the function solve – solving the problem.
scanf("%d", &n);

solve();

